Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2021, Volume 33, Number 5, Pages 16–34
DOI: https://doi.org/10.20948/mm-2021-05-02
(Mi mm4284)
 

This article is cited in 2 scientific papers (total in 2 papers)

$L^2$-dissipativity of finite-difference schemes for $\mathrm{1D}$ regularized barotropic gas dynamics equations at small Mach numbers

A. A. Zlotnikab, T. A. Lomonosova

a NRU Higher School of Economics
b Keldysh Institute of Applied Mathematics of RAS
Full-text PDF (506 kB) Citations (2)
References:
Abstract: We study explicit two-level finite-difference schemes on staggered meshes for two known regularizations of $\mathrm{1D}$ barotropic gas dynamics equations including schemes with discretizations in $x$ that possess the dissipativity property with respect to the total energy. We derive criterions of $L^2$-dissipativity in the Cauchy problem for their linearizations at a constant solution with zero background velocity. We compare the criterions for schemes on non-staggered and staggered meshes. Also we consider the case of $\mathrm{1D}$ Navier–Stokes equations without artificial viscosity coefficient. For one of their regularizations, the maximal time step is guaranteed for the choice of the regularization parameter $\tau_{opt}=\nu_*/c^2_*$, where $c_*$ and $\nu_*$ are the background sound speed and kinematic viscosity; such a choice does not depend on the meshes. To analyze the case of the $\mathrm{1D}$ Navier–Stokes–Cahn–Hilliard equations, we derive and verify the criterions for $L^2$-dissipativity and stability for an explicit finite-difference scheme approximating a nonstationary $4^{\text{th}}$-order in $x$ equation that includes a $2^{\text{nd}}$-order term in $x$. The obtained criteria may be useful to compute flows at small Mach numbers.
Keywords: $L^2$-dissipativity, explicit finite-difference schemes, staggered meshes, gas dynamics equations, Navier–Stokes–Cahn–Hilliard equations.
Funding agency Grant number
Russian Science Foundation 19-11-00169
Received: 11.02.2021
Revised: 11.02.2021
Accepted: 15.03.2021
English version:
Mathematical Models and Computer Simulations, 2021, Volume 13, Issue 6, Pages 1097–1108
DOI: https://doi.org/10.1134/S2070048221060259
Document Type: Article
Language: Russian
Citation: A. A. Zlotnik, T. A. Lomonosov, “$L^2$-dissipativity of finite-difference schemes for $\mathrm{1D}$ regularized barotropic gas dynamics equations at small Mach numbers”, Matem. Mod., 33:5 (2021), 16–34; Math. Models Comput. Simul., 13:6 (2021), 1097–1108
Citation in format AMSBIB
\Bibitem{ZloLom21}
\by A.~A.~Zlotnik, T.~A.~Lomonosov
\paper $L^2$-dissipativity of finite-difference schemes for $\mathrm{1D}$ regularized barotropic gas dynamics equations at small Mach numbers
\jour Matem. Mod.
\yr 2021
\vol 33
\issue 5
\pages 16--34
\mathnet{http://mi.mathnet.ru/mm4284}
\crossref{https://doi.org/10.20948/mm-2021-05-02}
\transl
\jour Math. Models Comput. Simul.
\yr 2021
\vol 13
\issue 6
\pages 1097--1108
\crossref{https://doi.org/10.1134/S2070048221060259}
Linking options:
  • https://www.mathnet.ru/eng/mm4284
  • https://www.mathnet.ru/eng/mm/v33/i5/p16
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:284
    Full-text PDF :32
    References:29
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024