Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2021, Volume 33, Number 3, Pages 73–84
DOI: https://doi.org/10.20948/mm-2021-03-05
(Mi mm4272)
 

This article is cited in 4 scientific papers (total in 4 papers)

On existence and uniqueness of remaining life expectancy estimates in the model of stable population

D. M. Ediev

North-Caucasian State Academy
Full-text PDF (300 kB) Citations (4)
References:
Abstract: We show existence and uniqueness of estimates for the growth parameter and the remaining life expectancy of elderly within the model of stable population with endogenous growth parameter. Results obtained point to possibility to estimate the growth parameter, assuming a graduated input data, from a general formal relation, without iterative or optimization procedures used. Presented results are of theoretical and practical importance in studying life expectancy and mortality of elderly.
Keywords: life expectancy, Malthusian parameter, stable population, age exaggeration.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00289
Received: 07.08.2020
Revised: 12.11.2020
Accepted: 30.11.2020
English version:
Mathematical Models and Computer Simulations, 2021, Volume 13, Issue 6, Pages 964–970
DOI: https://doi.org/10.1134/S2070048221060041
Document Type: Article
Language: Russian
Citation: D. M. Ediev, “On existence and uniqueness of remaining life expectancy estimates in the model of stable population”, Matem. Mod., 33:3 (2021), 73–84; Math. Models Comput. Simul., 13:6 (2021), 964–970
Citation in format AMSBIB
\Bibitem{Edi21}
\by D.~M.~Ediev
\paper On existence and uniqueness of remaining life expectancy estimates in the model of stable population
\jour Matem. Mod.
\yr 2021
\vol 33
\issue 3
\pages 73--84
\mathnet{http://mi.mathnet.ru/mm4272}
\crossref{https://doi.org/10.20948/mm-2021-03-05}
\transl
\jour Math. Models Comput. Simul.
\yr 2021
\vol 13
\issue 6
\pages 964--970
\crossref{https://doi.org/10.1134/S2070048221060041}
Linking options:
  • https://www.mathnet.ru/eng/mm4272
  • https://www.mathnet.ru/eng/mm/v33/i3/p73
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:355
    Full-text PDF :54
    References:69
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024