Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2020, Volume 32, Number 11, Pages 129–140
DOI: https://doi.org/10.20948/mm-2020-11-10
(Mi mm4238)
 

This article is cited in 3 scientific papers (total in 3 papers)

A numerical study of the gradient-drift instability growth rate at the fronts of the equatorial plasma bubbles

N. M. Kashchenko, S. A. Ishanov, S. V. Matsievsky

Kant Baltic Federal University
Full-text PDF (632 kB) Citations (3)
References:
Abstract: Ground and satellite measurements, as well as numerical modeling of the spatial structure of equatorial ionospheric bubbles, are carried out quite intensively. These data show that the longitude and altitude gradients of the electron density logarithm at the vertical boundaries of the bubbles can reach values of 0.001 1/m and 0.0001 1/m, respectively. With such electronic density concentration gradients, the gradient-drift instability can develop. This instability can generate ionospheric plasma irregularities with space-and-time scales are characteristic of equatorial F-spread. This article presents results of calculation of the gradient-drift instability growth rates at the ionospheric bubbles boundaries. The space-and-time structure of the equatorial plasma bubbles is obtained by numerical modeling. This simulation is based on a two-dimensional numerical model of the Rayleigh–Taylor instability in the Earth's equatorial ionosphere. This model is constructing on the condition that the Rayleigh–Taylor and gradient irregularities are strongly elongated along the magnetic field lines. The growth rates of the plasma gradient-drift instability are obtained from the dispersion equation. The results of numerical experiments confirm the possibility of generating the gradient-drift instability of ionospheric plasma. This is due to considerable longitude and altitude plasma gradients on the fronts of the developed equatorial plasma bubble. At the same time, the growth rate of the gradient-drift instability can reach values of 1/(170 s). The gradient-drift instability can be the cause of the equatorial F-spread.
Keywords: ionosphere, mathematical modeling, numerical modeling, equatorial plasma bubble, growth rate, Rayleigh–Taylor instability, gradient-drift instability, F-spread.
Funding agency Grant number
Russian Foundation for Basic Research 20-01-00361
Received: 29.06.2020
Revised: 29.06.2020
Accepted: 06.07.2020
English version:
Mathematical Models and Computer Simulations, 2021, Volume 13, Issue 4, Pages 623–630
DOI: https://doi.org/10.1134/S2070048221040141
Document Type: Article
Language: Russian
Citation: N. M. Kashchenko, S. A. Ishanov, S. V. Matsievsky, “A numerical study of the gradient-drift instability growth rate at the fronts of the equatorial plasma bubbles”, Matem. Mod., 32:11 (2020), 129–140; Math. Models Comput. Simul., 13:4 (2021), 623–630
Citation in format AMSBIB
\Bibitem{KasIshMat20}
\by N.~M.~Kashchenko, S.~A.~Ishanov, S.~V.~Matsievsky
\paper A numerical study of the gradient-drift instability growth rate at the fronts of the equatorial plasma bubbles
\jour Matem. Mod.
\yr 2020
\vol 32
\issue 11
\pages 129--140
\mathnet{http://mi.mathnet.ru/mm4238}
\crossref{https://doi.org/10.20948/mm-2020-11-10}
\transl
\jour Math. Models Comput. Simul.
\yr 2021
\vol 13
\issue 4
\pages 623--630
\crossref{https://doi.org/10.1134/S2070048221040141}
Linking options:
  • https://www.mathnet.ru/eng/mm4238
  • https://www.mathnet.ru/eng/mm/v32/i11/p129
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
    Statistics & downloads:
    Abstract page:334
    Full-text PDF :57
    References:35
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024