Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2020, Volume 32, Number 8, Pages 57–90
DOI: https://doi.org/10.20948/mm-2020-08-05
(Mi mm4206)
 

This article is cited in 6 scientific papers (total in 6 papers)

Modern methods of mathematical modeling of the development of hydrodynamic instabilities and turbulent mixing

V. F. Tishkin, V. A. Gasilov, N. V. Zmitrenko, P. A. Kuchugov, M. E. Ladonkina, Yu. A. Poveschenko

Keldysh Institute for Applied Mathematics RAS, Moscow
Full-text PDF (497 kB) Citations (6)
References:
Abstract: The study of the development of perturbations under the influence of various hydrodynamic instabilities, as well as the transition to turbulent mixing and turbulence, has been a subject of considerable interest over the past decades. This is primarily due to the importance of these phenomena for various fields of science and technology. It should be noted, that the final results of the turbulent flows characteristics study have not yet been obtained. This fact stimulates a great interest in this topic, both in sense of physical theory and in sense of approaches to mathematical modeling and numerical methods development. The capabilities of modern computer technology make it possible to carry out numerical experiments in two-dimensional and three-dimensional settings, and to analyze the features of new numerical methods. To date, there are a huge number of methods and their modifications are applied in practice. This review is devoted to the most promising, according to the authors, of them.
Keywords: mathematical modeling, high accuracy numerical methods, hydrodynamic instabilities, turbulent mixing.
Funding agency Grant number
Russian Foundation for Basic Research 19-11-50130
The reported study was funded by RFBR, project number 19-11-50130.
Received: 16.04.2020
Revised: 16.04.2020
Accepted: 08.06.2020
English version:
Mathematical Models and Computer Simulations, 2021, Volume 13, Issue 2, Pages 311–327
DOI: https://doi.org/10.1134/S2070048221020174
Document Type: Article
Language: Russian
Citation: V. F. Tishkin, V. A. Gasilov, N. V. Zmitrenko, P. A. Kuchugov, M. E. Ladonkina, Yu. A. Poveschenko, “Modern methods of mathematical modeling of the development of hydrodynamic instabilities and turbulent mixing”, Mat. Model., 32:8 (2020), 57–90; Math. Models Comput. Simul., 13:2 (2021), 311–327
Citation in format AMSBIB
\Bibitem{TisGasZmi20}
\by V.~F.~Tishkin, V.~A.~Gasilov, N.~V.~Zmitrenko, P.~A.~Kuchugov, M.~E.~Ladonkina, Yu.~A.~Poveschenko
\paper Modern methods of mathematical modeling of the development of hydrodynamic instabilities and turbulent mixing
\jour Mat. Model.
\yr 2020
\vol 32
\issue 8
\pages 57--90
\mathnet{http://mi.mathnet.ru/mm4206}
\crossref{https://doi.org/10.20948/mm-2020-08-05}
\transl
\jour Math. Models Comput. Simul.
\yr 2021
\vol 13
\issue 2
\pages 311--327
\crossref{https://doi.org/10.1134/S2070048221020174}
Linking options:
  • https://www.mathnet.ru/eng/mm4206
  • https://www.mathnet.ru/eng/mm/v32/i8/p57
  • This publication is cited in the following 6 articles:
    1. Y. A. Kriksin, V. F. Tishkin, “Entropic regularization of the discontinuous Galerkin method in conservative variables for three-dimensional Euler equations”, Math. Models Comput. Simul., 16:6 (2024), 843–852  mathnet  crossref  crossref
    2. Elena Protsenko, Aleksandr Strazhko, Sofya Protsenko, PROCEEDING OF THE 7TH INTERNATIONAL CONFERENCE OF SCIENCE, TECHNOLOGY, AND INTERDISCIPLINARY RESEARCH (IC-STAR 2021), 2601, PROCEEDING OF THE 7TH INTERNATIONAL CONFERENCE OF SCIENCE, TECHNOLOGY, AND INTERDISCIPLINARY RESEARCH (IC-STAR 2021), 2023, 040004  crossref
    3. K. V. Khishchenko, A. A. Charakhch'yan, “Numerical study of instability of medium interface during thermonuclear combustion of a cylindrical shelled microtarget”, Comput. Math. Math. Phys., 63:4 (2023), 644–658  mathnet  mathnet  crossref  crossref
    4. E. N. Shirokova, “Numerical Study of a Pulsed Jet Flow of an Inhomogeneous Gas-Dispersed Mixture”, Fluid Dyn, 58:8 (2023), 1594  crossref
    5. Alexander Sukhinov, Alexander Chistyakov, Inna Kuznetsova, Yulia Belova, Alla Nikitina, “Mathematical Model of Suspended Particles Transport in the Estuary Area, Taking into Account the Aquatic Environment Movement”, Mathematics, 10:16 (2022), 2866  crossref
    6. M. D. Bragin, “Influence of monotonization on the spectral resolution of bicompact schemes in the inviscid Taylor–Green vortex problem”, Comput. Math. Math. Phys., 62:4 (2022), 608–623  mathnet  mathnet  crossref  crossref  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:688
    Full-text PDF :324
    References:72
    First page:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025