Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2020, Volume 32, Number 6, Pages 53–65
DOI: https://doi.org/10.20948/mm-2020-06-04
(Mi mm4188)
 

This article is cited in 2 scientific papers (total in 2 papers)

Pattern formation in reaction-diffusion system with time-fractional derivatives

D. A. Zenyuk, G. G. Malinetsky

Keldysh Institute of Applied Mathematics, Russian Academy of Science, Moscow
Full-text PDF (566 kB) Citations (2)
References:
Abstract: In the present paper possible scenarios of pattern formation in non-linear media with diffusion and differential operators of non-integer order are studied for the abstract Brusselator model. By means of the standard linear analysis exact critical values for different types of instabilities are derived. It is shown that stability criteria significantly depend on the order of the fractional derivative in case of the Hopf and C2TH bifurcations. Predictions of the linear theory are confirmed by numerical simulation.
Keywords: fractional calculus, reaction-diffusion systems.
Received: 28.10.2019
Revised: 28.10.2019
Accepted: 23.12.2019
English version:
Mathematical Models and Computer Simulations, 2021, Volume 13, Issue 1, Pages 126–133
DOI: https://doi.org/10.1134/S2070048221010178
Document Type: Article
Language: Russian
Citation: D. A. Zenyuk, G. G. Malinetsky, “Pattern formation in reaction-diffusion system with time-fractional derivatives”, Matem. Mod., 32:6 (2020), 53–65; Math. Models Comput. Simul., 13:1 (2021), 126–133
Citation in format AMSBIB
\Bibitem{ZenMal20}
\by D.~A.~Zenyuk, G.~G.~Malinetsky
\paper Pattern formation in reaction-diffusion system with time-fractional derivatives
\jour Matem. Mod.
\yr 2020
\vol 32
\issue 6
\pages 53--65
\mathnet{http://mi.mathnet.ru/mm4188}
\crossref{https://doi.org/10.20948/mm-2020-06-04}
\transl
\jour Math. Models Comput. Simul.
\yr 2021
\vol 13
\issue 1
\pages 126--133
\crossref{https://doi.org/10.1134/S2070048221010178}
Linking options:
  • https://www.mathnet.ru/eng/mm4188
  • https://www.mathnet.ru/eng/mm/v32/i6/p53
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:355
    Full-text PDF :86
    References:35
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024