Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2020, Volume 32, Number 1, Pages 50–70
DOI: https://doi.org/10.20948/mm-2020-01-04
(Mi mm4147)
 

This article is cited in 6 scientific papers (total in 6 papers)

Implementation of the iterative algorithm for numerical solution of 2D magnetogasdynamics problems

A. Yu. Krukovskiy, V. A. Gasilov, Yu. A. Poveschenko, Yu. S. Sharova, L. V. Klochkova

Keldysh Institute of Applied Mathematics, Russian Acad. Sci.
Full-text PDF (502 kB) Citations (6)
References:
Abstract: We study an algorithm of making a numerical solution to the equations of magnetic gas dynamics (MHD), approximated by a completely conservative Eulerian-Lagrangian difference scheme (PCRS). The governing system describing a high-temperature matter dynamics is solved taking into account the conductive (electron, ion) and radiative heat transfer. The scheme is implicit for the calculations related to the “Lagrangian” moving grid, and the corresponding difference equations are solved by an iterative method with a consistent account of physical processes. We consider various combinations of difference equations grouped according to physical processes. The convergence criteria for the studied iteration process are obtained and validated through numerical experiments with model and application problems.
Keywords: magnetic gas dynamics, plasma dynamics, Z-pinch, implicit completely conservative difference scheme, iterative method.
Received: 18.06.2018
Revised: 18.06.2018
Accepted: 19.11.2018
English version:
Mathematical Models and Computer Simulations, 2020, Volume 12, Issue 5, Pages 706–718
DOI: https://doi.org/10.1134/S2070048220050129
Document Type: Article
Language: Russian
Citation: A. Yu. Krukovskiy, V. A. Gasilov, Yu. A. Poveschenko, Yu. S. Sharova, L. V. Klochkova, “Implementation of the iterative algorithm for numerical solution of 2D magnetogasdynamics problems”, Mat. Model., 32:1 (2020), 50–70; Math. Models Comput. Simul., 12:5 (2020), 706–718
Citation in format AMSBIB
\Bibitem{KruGasPov20}
\by A.~Yu.~Krukovskiy, V.~A.~Gasilov, Yu.~A.~Poveschenko, Yu.~S.~Sharova, L.~V.~Klochkova
\paper Implementation of the iterative algorithm for numerical solution of 2D magnetogasdynamics problems
\jour Mat. Model.
\yr 2020
\vol 32
\issue 1
\pages 50--70
\mathnet{http://mi.mathnet.ru/mm4147}
\crossref{https://doi.org/10.20948/mm-2020-01-04}
\transl
\jour Math. Models Comput. Simul.
\yr 2020
\vol 12
\issue 5
\pages 706--718
\crossref{https://doi.org/10.1134/S2070048220050129}
Linking options:
  • https://www.mathnet.ru/eng/mm4147
  • https://www.mathnet.ru/eng/mm/v32/i1/p50
  • This publication is cited in the following 6 articles:
    1. A. Yu. Krukovskii, I. V. Popov, Yu. A. Poveshchenko, “Estimates of the Convergence of Iterative Methods for Numerical Simulation of 3D Processes in Magnetohydrodynamics”, Comput. Math. and Math. Phys., 64:8 (2024), 1667  crossref
    2. A. Yu. Krukovskii, I. V. Popov, Yu. A. Poveschenko, “Estimates of the convergence of iterative methods for numerical simulation of 3D processes in magnetohydrodynamics”, Comput. Math. Math. Phys., 64:8 (2024), 1667–1679  mathnet  mathnet  crossref  crossref
    3. A. Yu. Krukovskiy, Yu. A. Poveshchenko, V. O. Podryga, “Convergence of some iterative algorithms for numerical solution of two-dimensional non-stationary problems of magnetic hydrodynamics”, Math. Models Comput. Simul., 15:4 (2023), 735–745  mathnet  crossref  crossref  mathscinet
    4. A. Yu. Krukovskii, Yu. A. Poveschenko, V. O. Podryga, D. S. Boikov, “Otsenki skhodimosti nekotorykh iteratsionnykh algoritmov chislennogo modelirovaniya dvumernykh uravnenii magnitnoi gidrodinamiki”, Preprinty IPM im. M. V. Keldysha, 2022, 013, 16 pp.  mathnet  crossref
    5. A. S. Boldarev, V. A. Gasilov, A. Yu. Krukovskiy, Yu. A. Poveschenko, “The technique of solution of the magnetohydrodynamics tasks in quasi-Lagrangian variables”, Math. Models Comput. Simul., 14:1 (2022), 10–18  mathnet  crossref  crossref
    6. Olga Gurgenovna Olkhovskaya, Alexander Yurievich Krukovsky, Yuri Andreevich Poveschenko, Yulia Sergeevna Sharova, Vladimir Anatolievich Gasilov, “ALE-MHD technique for modeling three-dimensional magnetic implosion of a liner”, MathMon, 50 (2021), 119  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:476
    Full-text PDF :108
    References:58
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025