Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2003, Volume 15, Number 8, Pages 99–112 (Mi mm413)  

High-order time-accurate schemes for parabolic singular perturbation convection-diffusion problems with Robin boundary conditions

P. W. Hemkera, G. I. Shishkinb, L. P. Shishkinab

a Centrum voor Wiskunde en Informatica
b Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
References:
Abstract: The Robin boundary value problem for a singularly perturbed parabolic PDE with convection is considered on an interval. The highest space derivatives in the equation and in the boundary condition contain the perturbation parameter e. For such problems the errors of well-known numerical methods increase unboundedly as $\varepsilon\ll N^{-1}$, where $N$ is the number of mesh points over the interval. For the case of sufficiently smooth data, it is easy to construct a standard finite difference operator and a piecewise uniform mesh condensing in the boundary layer, which give an e-uniformly convergent difference scheme. The order of convergence for such a scheme is exactly one and up to a small logarithmic factor one with respect to the time and space variables, respectively. In this paper we construct high-order time-accurate $\varepsilon$-uniformly convergent schemes by a defect correction technique. The efficiency of the new defect-correction schemes is confirmed with numerical experiments.
Received: 04.04.2002
Bibliographic databases:
Language: Russian
Citation: P. W. Hemker, G. I. Shishkin, L. P. Shishkina, “High-order time-accurate schemes for parabolic singular perturbation convection-diffusion problems with Robin boundary conditions”, Matem. Mod., 15:8 (2003), 99–112
Citation in format AMSBIB
\Bibitem{HemShiShi03}
\by P.~W.~Hemker, G.~I.~Shishkin, L.~P.~Shishkina
\paper High-order time-accurate schemes for parabolic singular perturbation convection-diffusion problems with Robin boundary conditions
\jour Matem. Mod.
\yr 2003
\vol 15
\issue 8
\pages 99--112
\mathnet{http://mi.mathnet.ru/mm413}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2025709}
\zmath{https://zbmath.org/?q=an:1129.76034}
Linking options:
  • https://www.mathnet.ru/eng/mm413
  • https://www.mathnet.ru/eng/mm/v15/i8/p99
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:399
    Full-text PDF :162
    References:57
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024