Loading [MathJax]/jax/output/SVG/config.js
Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2019, Volume 31, Number 10, Pages 7–21
DOI: https://doi.org/10.1134/S0234087919100010
(Mi mm4114)
 

This article is cited in 2 scientific papers (total in 2 papers)

Comparison of gradient approximation methods in schemes designed for scale-resolving simulations

S. Bakhnea, S. M. Bosniakovab, S. V. Mikhailovab, A. I. Troshinba

a Moscow Institute of Physics and Technology
b Central Aerohydrodynamic Institute
Full-text PDF (677 kB) Citations (2)
References:
Abstract: Various methods for improved accuracy approximation of the gradients entering the diffusion fluxes are considered. Linear combinations of 2$^{\mathrm{nd}}$ order difference schemes for a non-uniform grid that transform into 4$^{\mathrm{th}}$ order schemes in the uniform case were investigated. We also considered 3$^{\mathrm{rd}}$ and 4$^{\mathrm{th}}$ order schemes for approximating gradients on a non-uniform grid in the normal and tangent directions to the cell face, respectively, based on Lagrange polynomials. The initial testing was carried out on one-dimensional functions: a smooth Gauss function and a piecewise linear function. Next, the schemes were applied in direct numerical simulation of the Taylor–Green vortex.
Keywords: approximation order, diffusion fluxes, gradients.
Funding agency Grant number
Russian Foundation for Basic Research 18-08-01436_а
Received: 04.03.2019
Revised: 08.04.2019
Accepted: 20.05.2019
English version:
Mathematical Models and Computer Simulations, 2020, Volume 12, Issue 3, Pages 357–367
DOI: https://doi.org/10.1134/S2070048220030072
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. Bakhne, S. M. Bosniakov, S. V. Mikhailov, A. I. Troshin, “Comparison of gradient approximation methods in schemes designed for scale-resolving simulations”, Mat. Model., 31:10 (2019), 7–21; Math. Models Comput. Simul., 12:3 (2020), 357–367
Citation in format AMSBIB
\Bibitem{BakBosMik19}
\by S.~Bakhne, S.~M.~Bosniakov, S.~V.~Mikhailov, A.~I.~Troshin
\paper Comparison of gradient approximation methods in schemes designed for scale-resolving simulations
\jour Mat. Model.
\yr 2019
\vol 31
\issue 10
\pages 7--21
\mathnet{http://mi.mathnet.ru/mm4114}
\crossref{https://doi.org/10.1134/S0234087919100010}
\elib{https://elibrary.ru/item.asp?id=41137467}
\transl
\jour Math. Models Comput. Simul.
\yr 2020
\vol 12
\issue 3
\pages 357--367
\crossref{https://doi.org/10.1134/S2070048220030072}
Linking options:
  • https://www.mathnet.ru/eng/mm4114
  • https://www.mathnet.ru/eng/mm/v31/i10/p7
  • This publication is cited in the following 2 articles:
    1. Sergei Bakhne, Vladimir Sabelnikov, “A Method for Choosing the Spatial and Temporal Approximations for the LES Approach”, Fluids, 7:12 (2022), 376  crossref
    2. S. Bakhne, “Comparison of convective terms approximations in DES family methods”, Math. Models Comput. Simul., 14:1 (2022), 99–109  mathnet  crossref  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:366
    Full-text PDF :221
    References:50
    First page:12
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025