Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2019, Volume 31, Number 8, Pages 21–43
DOI: https://doi.org/10.1134/S0234087919080021
(Mi mm4101)
 

This article is cited in 1 scientific paper (total in 1 paper)

On monotonic differential schemes

I. V. Popovab

a Keldysh Institute of Applied Mathematics of RAS, Moscow
b National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Full-text PDF (523 kB) Citations (1)
References:
Abstract: Method of construction of monotonic differential schemes for solving the simplest partial differential equations of elliptic and parabolic types with first derivatives and a small parameter at highest derivative is suggested. For this, the concept of adaptive artificial viscosity (AAV) is introduced. The AAV was used for construction of monotonic differential schemes of the approximation order $O(h^4)$ for the problem with boundary layer and $O(\tau^2+h^2)$ for Burgers equation, where $h$ and $\tau$ are mesh steps in space and time correspondingly. Samarsky–Golant approximation schemes (or schemes with ordered differences) are used out of the domains of large gradients. Importance of usage of second order time schemes is outlined. Numerical results are presented.
Keywords: finite difference scheme, monotone schemes, adaptive artificial viscosity.
Received: 18.09.2018
Revised: 18.09.2018
Accepted: 11.02.2019
English version:
Mathematical Models and Computer Simulations, 2020, Volume 12, Issue 2, Pages 195–209
DOI: https://doi.org/10.1134/S207004822002012X
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: I. V. Popov, “On monotonic differential schemes”, Matem. Mod., 31:8 (2019), 21–43; Math. Models Comput. Simul., 12:2 (2020), 195–209
Citation in format AMSBIB
\Bibitem{Pop19}
\by I.~V.~Popov
\paper On monotonic differential schemes
\jour Matem. Mod.
\yr 2019
\vol 31
\issue 8
\pages 21--43
\mathnet{http://mi.mathnet.ru/mm4101}
\crossref{https://doi.org/10.1134/S0234087919080021}
\elib{https://elibrary.ru/item.asp?id=38487766}
\transl
\jour Math. Models Comput. Simul.
\yr 2020
\vol 12
\issue 2
\pages 195--209
\crossref{https://doi.org/10.1134/S207004822002012X}
Linking options:
  • https://www.mathnet.ru/eng/mm4101
  • https://www.mathnet.ru/eng/mm/v31/i8/p21
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025