Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2019, Volume 31, Number 7, Pages 3–20
DOI: https://doi.org/10.1134/S0234087919070013
(Mi mm4092)
 

This article is cited in 1 scientific paper (total in 1 paper)

Difference schemes of consistent approximation to stress-strain state and energy balance of medium

Yu. A. Poveshchenkoab, V. A. Gasilovab, V. O. Podrygacb, M. E. Ladonkinab, A. S. Voloshind, D. S. Boykovb, K. A. Beklemyshevad

a National Research Nuclear University MEPhI
b Keldysh Institute of Applied Mathematics of RAS
c Moscow Automobile and Road Construction State Technical University (MADI)
d Moscow Institute of Physics and Technology (State University)
Full-text PDF (624 kB) Citations (1)
References:
Abstract: Using the support operator technique for two-dimensional problems of elasticity theory we constructed integrally consistent approximations to the components of the strain tensor and the elastic energy of the medium for the equations of the elasticity theory in terms of displacements. Approximations are constructed for the case of irregular difference grids, in the R-Z plane of a cylindrical coordinate system. We use the limiting process assuming that the azimuthal angle tends to zero for passing from the full threedimensional approximations to the two-dimensional approximations in the R-Z plane. The used technique preserves the divergent form, self-adjointness and sign-definiteness of the two-dimensional approximations. These properties are inherent in their 3D predecessors corresponding to the operators in the governing differential equations.
Keywords: difference schemes, method of support operators, theory of elasticity, cylindrical geometry.
Funding agency Grant number
Russian Science Foundation 16-11-00100п
Received: 10.09.2018
Revised: 04.10.2018
Accepted: 19.11.2018
English version:
Mathematical Models and Computer Simulations, 2020, Volume 12, Issue 2, Pages 99–109
DOI: https://doi.org/10.1134/S2070048220020131
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Yu. A. Poveshchenko, V. A. Gasilov, V. O. Podryga, M. E. Ladonkina, A. S. Voloshin, D. S. Boykov, K. A. Beklemysheva, “Difference schemes of consistent approximation to stress-strain state and energy balance of medium”, Matem. Mod., 31:7 (2019), 3–20; Math. Models Comput. Simul., 12:2 (2020), 99–109
Citation in format AMSBIB
\Bibitem{PovGasPod19}
\by Yu.~A.~Poveshchenko, V.~A.~Gasilov, V.~O.~Podryga, M.~E.~Ladonkina, A.~S.~Voloshin, D.~S.~Boykov, K.~A.~Beklemysheva
\paper Difference schemes of consistent approximation to stress-strain state and energy balance of medium
\jour Matem. Mod.
\yr 2019
\vol 31
\issue 7
\pages 3--20
\mathnet{http://mi.mathnet.ru/mm4092}
\crossref{https://doi.org/10.1134/S0234087919070013}
\elib{https://elibrary.ru/item.asp?id=38487751}
\transl
\jour Math. Models Comput. Simul.
\yr 2020
\vol 12
\issue 2
\pages 99--109
\crossref{https://doi.org/10.1134/S2070048220020131}
Linking options:
  • https://www.mathnet.ru/eng/mm4092
  • https://www.mathnet.ru/eng/mm/v31/i7/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:339
    Full-text PDF :78
    References:40
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024