Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2019, Volume 31, Number 5, Pages 121–144
DOI: https://doi.org/10.1134/S0234087919050083
(Mi mm4076)
 

On gradient calculation in flux correction method

P. A. Bakhvalov

Keldysh Institute of Applied Mathematics of RAS
References:
Abstract: Flux Correction method is a family of edge-based schemes for solving hyperbolic systems on unstructured meshes. The cruical operation there is a nodal gradient calculation of physical variables with at least second order of accuracy. There are two well-known procedures meeting this condition. One is based on Least Squares method and the other one is based on spectral elements. In this paper we compare resulting schemes and discuss their problems.
Keywords: unstructured mesh, Flux Correction method, UFC scheme.
Funding agency Grant number
Russian Foundation for Basic Research 16-31-60072_мол_а_дк
Received: 20.08.2018
Revised: 20.08.2018
Accepted: 22.10.2018
English version:
Mathematical Models and Computer Simulations, 2020, Volume 12, Issue 1, Pages 12–26
DOI: https://doi.org/10.1134/S2070048220010020
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: P. A. Bakhvalov, “On gradient calculation in flux correction method”, Matem. Mod., 31:5 (2019), 121–144; Math. Models Comput. Simul., 12:1 (2020), 12–26
Citation in format AMSBIB
\Bibitem{Bak19}
\by P.~A.~Bakhvalov
\paper On gradient calculation in flux correction method
\jour Matem. Mod.
\yr 2019
\vol 31
\issue 5
\pages 121--144
\mathnet{http://mi.mathnet.ru/mm4076}
\crossref{https://doi.org/10.1134/S0234087919050083}
\elib{https://elibrary.ru/item.asp?id=37298186}
\transl
\jour Math. Models Comput. Simul.
\yr 2020
\vol 12
\issue 1
\pages 12--26
\crossref{https://doi.org/10.1134/S2070048220010020}
Linking options:
  • https://www.mathnet.ru/eng/mm4076
  • https://www.mathnet.ru/eng/mm/v31/i5/p121
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:286
    Full-text PDF :161
    References:34
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024