Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2019, Volume 31, Number 1, Pages 114–126
DOI: https://doi.org/10.1134/S0234087919010076
(Mi mm4038)
 

Bifurcation model of the laminar-turbulent transition near a flat wall

O. V. Troshkin, S. A. Kozlov, S. V. Fortova, V. V. Shepelev, I. V. Eriklintsev

Institute for Computer Aided Design of RAS
References:
Abstract: In this article we describe a new mathematical model (bifurcational turbulence model) and argument why it's suitable for prediction of laminar and turbulent boundary layer characteristics. The model's distinguishing feature is that laminar-turbulent transition in medium arises as direct consequence of bifurcational properties of underlying RANS (Reynolds-averaged Navier–Stokes) equations which are closed in a specific way. The article is divided in three major parts. The first part describes RANS and second-order closure conditions along with premises that we use to obtain model equations in closed form. The second part is dedicated to the details of a particular turbulence model and its application to general shear layer problem. In the third part we consider turbulence transition in boundary layer over flat plate and present results of numerical simulations compared to experimental data for the case.
Keywords: Navier–Stokes equations, RANS, laminar-turbulent transition.
Received: 12.02.2018
Revised: 12.02.2018
Accepted: 12.03.2018
English version:
Mathematical Models and Computer Simulations, 2019, Volume 11, Issue 5, Pages 722–730
DOI: https://doi.org/10.1134/S2070048219050193
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: O. V. Troshkin, S. A. Kozlov, S. V. Fortova, V. V. Shepelev, I. V. Eriklintsev, “Bifurcation model of the laminar-turbulent transition near a flat wall”, Matem. Mod., 31:1 (2019), 114–126; Math. Models Comput. Simul., 11:5 (2019), 722–730
Citation in format AMSBIB
\Bibitem{TroKozFor19}
\by O.~V.~Troshkin, S.~A.~Kozlov, S.~V.~Fortova, V.~V.~Shepelev, I.~V.~Eriklintsev
\paper Bifurcation model of the laminar-turbulent transition near a flat wall
\jour Matem. Mod.
\yr 2019
\vol 31
\issue 1
\pages 114--126
\mathnet{http://mi.mathnet.ru/mm4038}
\crossref{https://doi.org/10.1134/S0234087919010076}
\elib{https://elibrary.ru/item.asp?id=37174954}
\transl
\jour Math. Models Comput. Simul.
\yr 2019
\vol 11
\issue 5
\pages 722--730
\crossref{https://doi.org/10.1134/S2070048219050193}
Linking options:
  • https://www.mathnet.ru/eng/mm4038
  • https://www.mathnet.ru/eng/mm/v31/i1/p114
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:314
    Full-text PDF :77
    References:39
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024