Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2018, Volume 30, Number 10, Pages 67–85 (Mi mm4009)  

This article is cited in 2 scientific papers (total in 2 papers)

An adaptive Chebyshev iterative method

V. T. Zhukov, N. D. Novikova, O. B. Feodoritova

Keldysh Institute of Applied Mathematics of RAS, Moscow
Full-text PDF (466 kB) Citations (2)
References:
Abstract: For the numerical solution of a boundary-value problem of three-dimensional elliptic equations an adaptive Chebyshev iterative method is constructed. In this adaptive method, the unknown lower bound of the spectrum of the discrete operator is refined in the additional cycle of the iterative method; the upper bound of the spectrum is taken to be its estimate by the Gershgorin theorem. Such procedure ensures the convergence of the constructed adaptive method with computational costs close to the costs of the Chebyshev method, which uses the exact boundaries of the spectrum of the discrete operator.
Keywords: elliptic equations, Chebyshev polynomials, adaptive method.
Funding agency Grant number
Russian Science Foundation 14–21–00025–П
Received: 30.10.2017
English version:
Mathematical Models and Computer Simulations, 2019, Volume 11, Issue 3, Pages 426–437
DOI: https://doi.org/10.1134/S2070048219030165
Document Type: Article
Language: Russian
Citation: V. T. Zhukov, N. D. Novikova, O. B. Feodoritova, “An adaptive Chebyshev iterative method”, Matem. Mod., 30:10 (2018), 67–85; Math. Models Comput. Simul., 11:3 (2019), 426–437
Citation in format AMSBIB
\Bibitem{ZhuNovFeo18}
\by V.~T.~Zhukov, N.~D.~Novikova, O.~B.~Feodoritova
\paper An adaptive Chebyshev iterative method
\jour Matem. Mod.
\yr 2018
\vol 30
\issue 10
\pages 67--85
\mathnet{http://mi.mathnet.ru/mm4009}
\transl
\jour Math. Models Comput. Simul.
\yr 2019
\vol 11
\issue 3
\pages 426--437
\crossref{https://doi.org/10.1134/S2070048219030165}
Linking options:
  • https://www.mathnet.ru/eng/mm4009
  • https://www.mathnet.ru/eng/mm/v30/i10/p67
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:368
    Full-text PDF :122
    References:51
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024