Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2018, Volume 30, Number 2, Pages 48–80 (Mi mm3939)  

This article is cited in 17 scientific papers (total in 17 papers)

Kinetic Monte Carlo method: mathematical foundations and applications to physics of low-dimensional nanostructures

S. V. Kolesnikov, A. M. Saletsky, S. A. Dokukin, A. L. Klavsyuk

Faculty of Physics, Moscow State University
References:
Abstract: The kinetic Monte Carlo method is essential tool for investigation of atomic and molecular systems. It is applicable for the wide range of problems such as the atomic diffusion, the formation of crystal defects and chemical compounds, the growth and the self-organization of nanostructures. In the present review we consider the basic principles of the kinetic Monte Carlo method and its modern modifications both lattice and non-lattice. The special attention is focused on the self-learning algorithms constructed from different saddle point finding methods and the algorithms for kinetic Monte Carlo acceleration. All methods are illustrated by the actual examples, the most of them are connected with the physics of metal surfaces.
Keywords: kinetic Monte Carlo, self-organization, nanostructures.
Received: 03.04.2017
English version:
Mathematical Models and Computer Simulations, 2018, Volume 10, Issue 5, Pages 564–587
DOI: https://doi.org/10.1134/S2070048218050071
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. V. Kolesnikov, A. M. Saletsky, S. A. Dokukin, A. L. Klavsyuk, “Kinetic Monte Carlo method: mathematical foundations and applications to physics of low-dimensional nanostructures”, Matem. Mod., 30:2 (2018), 48–80; Math. Models Comput. Simul., 10:5 (2018), 564–587
Citation in format AMSBIB
\Bibitem{KolSalDok18}
\by S.~V.~Kolesnikov, A.~M.~Saletsky, S.~A.~Dokukin, A.~L.~Klavsyuk
\paper Kinetic Monte Carlo method: mathematical foundations and applications to physics of low-dimensional nanostructures
\jour Matem. Mod.
\yr 2018
\vol 30
\issue 2
\pages 48--80
\mathnet{http://mi.mathnet.ru/mm3939}
\elib{https://elibrary.ru/item.asp?id=32497617}
\transl
\jour Math. Models Comput. Simul.
\yr 2018
\vol 10
\issue 5
\pages 564--587
\crossref{https://doi.org/10.1134/S2070048218050071}
Linking options:
  • https://www.mathnet.ru/eng/mm3939
  • https://www.mathnet.ru/eng/mm/v30/i2/p48
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:1039
    Full-text PDF :1461
    References:58
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024