Abstract:
The return problem of laws determining of the covering inhomogeneity of the elastic sphere characterized
by minimum reflection of a plane sound wave in a preset angular sector and frequency
range is considered. Based on an analytic solution to the direct problem, a functional expressing
the reflection intensity is constructed and an algorithm for its minimization is proposed. Analytic
expressions describing mechanical parameters of the inhomogeneous coating are obtained.
Keywords:
reflection of sound, elastic sphere, inhomogeneous coating, inhomogeneity laws.
Citation:
L. A. Tolokonnikov, N. V. Larin, S. A. Skobel'tsyn, “Modelling of inhomogeneous coating of an elastic sphere with demanded sound-reflecting properties”, Mat. Model., 29:11 (2017), 89–98; Math. Models Comput. Simul., 10:3 (2018), 333–340
This publication is cited in the following 6 articles:
L. A. Tolokonnikov, S. L. Tolokonnikov, “Difraktsiya ploskoi zvukovoi volny na uprugom share s neodnorodnym transversalno-izotropnym sloem”, Chebyshevskii sb., 22:4 (2021), 332–343
L. A. Tolokonnikov, “Rasseyanie ploskoi zvukovoi volny sharom s neodnorodnym anizotropnym pokrytiem v prisutstvii ploskoi poverkhnosti”, Chebyshevskii sb., 22:5 (2021), 223–233
N. V. Larin, L. A. Tolokonnikov, “Sound scattering by the thermoelastic continuously-inhomogeneous covered sphere in heat-conducting fluid”, Math. Models Comput. Simul., 11:6 (2019), 1007–1018
N. N. Dobrovolskii, N. V. Larin, S. A. Skobeltsyn, L. A. Tolokonnikov, “O resheniyakh obratnykh zadach difraktsii zvukovykh voln”, Chebyshevskii sb., 20:3 (2019), 220–245
L. A. Tolokonnikov, “Difraktsiya ploskoi zvukovoi volny na uprugom share s neodnorodnym pokrytiem, raspolozhennom vblizi ploskosti”, Chebyshevskii sb., 19:2 (2018), 199–216
Larin N.V., “Diffraction of a Plane Sound Wave on a Thermoelastic Sphere With a Discretely Inhomogeneous Coating”, J. Appl. Mech. Tech. Phys., 59:6 (2018), 1015–1023