Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2017, Volume 29, Number 8, Pages 123–130 (Mi mm3881)  

Approximate hydromechanical solution of the private problem in perturbation of the surface of the water

K. N. Anakhaeva, H. M. Temukuevb

a Mountain Geophysical Institute
b Kokov Kabardino-Balkarian Agricultural University
References:
Abstract: The paper presents an approximate simulation of hydro-private water surface perturbation problem stock tsunami potential flat statement on the basis of the theory of functions of a complex variable by using the method of successive conformal mappings. Analytical dependences for the preliminary determination in the area of occurrence of tsunamis stock of all necessary parameters initial gravitational wave with the example of numerical calculation are obtained. It shows nonlinear growth pattern of gravitational wave height, qualitatively consistent with an asymmetrical wave disturbances from a meteorite fall in the water area.
Keywords: function of complex variable, conformal mappings consistent, complex potential, disturbance of water surface, stock tsunami.
Received: 13.10.2015
Revised: 14.03.2016
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: K. N. Anakhaev, H. M. Temukuev, “Approximate hydromechanical solution of the private problem in perturbation of the surface of the water”, Matem. Mod., 29:8 (2017), 123–130
Citation in format AMSBIB
\Bibitem{AnaTem17}
\by K.~N.~Anakhaev, H.~M.~Temukuev
\paper Approximate hydromechanical solution of the private problem in perturbation of the surface of the water
\jour Matem. Mod.
\yr 2017
\vol 29
\issue 8
\pages 123--130
\mathnet{http://mi.mathnet.ru/mm3881}
\elib{https://elibrary.ru/item.asp?id=29810006}
Linking options:
  • https://www.mathnet.ru/eng/mm3881
  • https://www.mathnet.ru/eng/mm/v29/i8/p123
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:215
    Full-text PDF :53
    References:39
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024