Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2017, Volume 29, Number 7, Pages 3–14 (Mi mm3863)  

This article is cited in 5 scientific papers (total in 5 papers)

4th order difference scheme for the differential equation with variable coefficients

V. A. Gordinab, E. A. Tsymbalovbc

a Hydrometeorological Center of Russia
b National Research University “Higher school of economics”
c Skolkovo Institute of Science and Technology
Full-text PDF (440 kB) Citations (5)
References:
Abstract: We present compact difference scheme on three-point stencil for unknown function. The scheme approximates linear second order differential equation with variable smooth coefficient. Our numerical experiments confirmed 4-th accuracy order of solutions of the difference scheme and of eigenvalues’ approximation for the boundary problem. The difference operator is almost self-conjugate, and its spectrum is real. The Richardson extrapolation method improves the accuracy order.
Keywords: compact difference scheme, divergent scheme, test functions, self-conjugacy.
Received: 10.10.2016
English version:
Mathematical Models and Computer Simulations, 2018, Volume 10, Issue 1, Pages 79–88
DOI: https://doi.org/10.1134/S2070048218010064
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. A. Gordin, E. A. Tsymbalov, “4th order difference scheme for the differential equation with variable coefficients”, Mat. Model., 29:7 (2017), 3–14; Math. Models Comput. Simul., 10:1 (2018), 79–88
Citation in format AMSBIB
\Bibitem{GorTsy17}
\by V.~A.~Gordin, E.~A.~Tsymbalov
\paper 4$^{\mathrm{th}}$ order difference scheme for the differential equation with variable coefficients
\jour Mat. Model.
\yr 2017
\vol 29
\issue 7
\pages 3--14
\mathnet{http://mi.mathnet.ru/mm3863}
\elib{https://elibrary.ru/item.asp?id=29404328}
\transl
\jour Math. Models Comput. Simul.
\yr 2018
\vol 10
\issue 1
\pages 79--88
\crossref{https://doi.org/10.1134/S2070048218010064}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042557369}
Linking options:
  • https://www.mathnet.ru/eng/mm3863
  • https://www.mathnet.ru/eng/mm/v29/i7/p3
  • This publication is cited in the following 5 articles:
    1. Liling Shen, “Parallel Solving Method for the Variable Coefficient Nonlinear Equation”, International Journal of Circuits, Systems and Signal Processing, 16 (2022), 264  crossref
    2. V. A. Gordin, “Compact finite-difference scheme for differential relations' approximation”, Math. Models Comput. Simul., 12:2 (2020), 133–142  mathnet  crossref  crossref  elib
    3. V.A. Gordin, “COMPACT FINITE-DIFFERENCE SCHEMES FOR WEAKLY NON-LINEAR PROBLEMS AND BOUNDARY CONDITIONS IMITATING CAUCHY PROBLEM”, JOR, 47:1 (2019), 32  crossref
    4. V. A. Gordin, E. A. Tsymbalov, “Compact difference scheme for parabolic and Schrödinger-type equations with variable coefficients”, J. Comput. Phys., 375 (2018), 1451–1468  crossref  mathscinet  zmath  adsnasa  isi  scopus
    5. V. A. Gordin, E. A. Tsymbalov, “Kompaktnaya raznostnaya skhema dlya differentsialnogo uravneniya s kusochno-postoyannym koeffitsientom”, Matem. modelirovanie, 29:12 (2017), 16–28  mathnet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:600
    Full-text PDF :378
    References:81
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025