Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2017, Volume 29, Number 6, Pages 115–134 (Mi mm3861)  

This article is cited in 5 scientific papers (total in 5 papers)

The incomplete coupling problem of hydraulic fracturing equations

A. V. Karakinab, M. M. Ramazanovca, V. E. Borisova

a Keldysh Institute of Applied Mathematics RAS
b Oil and Gas Research Institute RAS
c Institute for Geothermal Problems of the Dagestan Scientific Center RAS
Full-text PDF (413 kB) Citations (5)
References:
Abstract: We consider a problem of evolution of the state of poroelastic media coupled with slow motions of the viscous fluid inside hydraulic fracture in 3D setting. The fluid flow is induced by injection of fluid into the fracture. The fluid flow is described using Reynolds lubrication equations. External poroelasric media is governed by Biot poroelasticity equations. We analyze interplay of the different geomechanical processes in the media and the fracture using asymptotic framework. As a result, it is shown that the complete coupled problem can be reduced to the three one-way coupled problems which can be solved sequentially. The approach allows to analyze certain process related to the hydraulic fracture analysis as well as some other ones. At the same time the approach provides theoretical background for construction of new physically-based iterative and preconditioning techniques suitable for solution of the complete coupled problem.
Keywords: hydraulic fracture problem, poroelastic medium, equilibrium crack, incomplete coupling principle.
Funding agency Grant number
Russian Science Foundation 15-11-00021
Received: 03.10.2016
English version:
Mathematical Models and Computer Simulations, 2018, Volume 10, Issue 1, Pages 45–58
DOI: https://doi.org/10.1134/S2070048218010076
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. V. Karakin, M. M. Ramazanov, V. E. Borisov, “The incomplete coupling problem of hydraulic fracturing equations”, Matem. Mod., 29:6 (2017), 115–134; Math. Models Comput. Simul., 10:1 (2018), 45–58
Citation in format AMSBIB
\Bibitem{KarRamBor17}
\by A.~V.~Karakin, M.~M.~Ramazanov, V.~E.~Borisov
\paper The incomplete coupling problem of hydraulic fracturing equations
\jour Matem. Mod.
\yr 2017
\vol 29
\issue 6
\pages 115--134
\mathnet{http://mi.mathnet.ru/mm3861}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3665418}
\elib{https://elibrary.ru/item.asp?id=29207731}
\transl
\jour Math. Models Comput. Simul.
\yr 2018
\vol 10
\issue 1
\pages 45--58
\crossref{https://doi.org/10.1134/S2070048218010076}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042558798}
Linking options:
  • https://www.mathnet.ru/eng/mm3861
  • https://www.mathnet.ru/eng/mm/v29/i6/p115
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024