Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2017, Volume 29, Number 2, Pages 135–138 (Mi mm3821)  

On numerical methods for functions depending on a very large number of variables

I. M. Sobol

Keldysh Institute of Applied Mathematics of RAS
References:
Abstract: The question under discussion is why do optimal algorithms on classes of functions sometimes become useless in practice. As an example let's consider the class of functions which satisfy a general Lipschitz condition. The methods of integral evaluation over a unit cube of $d$ dimensions, where $d$ is significantly large, are discussed. It is assumed that the integrand is square integrable. A crude Monte Carlo estimation can be used. In that case the probable error of estimation is proportional $1/\sqrt{N}$, where $N$ is the number of values of the integrand. If we use a quasi-Monte Carlo method instead of Monte Carlo one, then the error does not depend on the dimension $d$, numerous examples show that it depends on the average dimension $\hat{d}$ of the integrand. For small $\hat{d}$ the order of the error is close to $1/N$.
Keywords: optimal algorithm, Lipschitz condition, Monte Carlo method, quasi-Monte Carlo method, the average dimension.
Received: 14.11.2016
English version:
Mathematical Models and Computer Simulations, 2017, Volume 9, Issue 5, Pages 598–600
DOI: https://doi.org/10.1134/S207004821705012X
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: I. M. Sobol, “On numerical methods for functions depending on a very large number of variables”, Matem. Mod., 29:2 (2017), 135–138; Math. Models Comput. Simul., 9:5 (2017), 598–600
Citation in format AMSBIB
\Bibitem{Sob17}
\by I.~M.~Sobol
\paper On numerical methods for functions depending on a very large number of variables
\jour Matem. Mod.
\yr 2017
\vol 29
\issue 2
\pages 135--138
\mathnet{http://mi.mathnet.ru/mm3821}
\elib{https://elibrary.ru/item.asp?id=28912748}
\transl
\jour Math. Models Comput. Simul.
\yr 2017
\vol 9
\issue 5
\pages 598--600
\crossref{https://doi.org/10.1134/S207004821705012X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85029740017}
Linking options:
  • https://www.mathnet.ru/eng/mm3821
  • https://www.mathnet.ru/eng/mm/v29/i2/p135
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:410
    Full-text PDF :162
    References:54
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024