Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2017, Volume 29, Number 2, Pages 3–22 (Mi mm3811)  

This article is cited in 27 scientific papers (total in 27 papers)

Discontinuous Galerkin method on three-dimensional tetrahedral meshes. The usage of the operator programming method

M. M. Krasnova, P. A. Kuchugova, M. E. Ladonkinaba, V. F. Tishkinab

a Keldysh Institute for Applied Mathematics RAS, Moscow
b Lavrentyev Institute of Hydrodynamics of SB RAS, Novosibirsk
References:
Abstract: In the numerical simulation of gasdynamic flows in areas with complex geometry it is necessary to use detailed unstructured grids and numerical methods of high accuracy. Galerkin method with discontinuous basis functions or Discontinuous Galerkin Method (DGM) works well in dealing with such problems. This approach has several advantages inherent in both finite-element and finite-difference approximations. At the same time discontinuous Galerkin method has a significant computational complexity, so the corresponding implementation should efficiently use all available computational capacity. In order to speed up the calculations operator programming method was applied while creating the computational module.
Operator programming method allows writing mathematical formulas in programs in compact form and helps to port the programs to parallel architectures, such as NVidia CUDA and Intel Xeon Phi. Earlier the operator programming method was implemented for regular threedimensional Cartesian grids and tree-dimensional locally adaptive grids. In this work, the approach is applied to three-dimensional tetrahedron meshes. This demonstrates the possibility of implementation of the method on arbitrary tree-dimensional meshes. Besides, in this work we give the example of the usage of template metaptogramming methods of the C++ programming language to speed-up calculations.
Keywords: operator programming method, three-dimensional tetrahedral meshes, discontinuous Galerkin method, CUDA, template metaprogramming.
Funding agency Grant number
Russian Science Foundation 16-11-10033
Received: 23.05.2016
English version:
Mathematical Models and Computer Simulations, 2017, Volume 9, Issue 5, Pages 529–543
DOI: https://doi.org/10.1134/S2070048217050064
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. M. Krasnov, P. A. Kuchugov, M. E. Ladonkina, V. F. Tishkin, “Discontinuous Galerkin method on three-dimensional tetrahedral meshes. The usage of the operator programming method”, Matem. Mod., 29:2 (2017), 3–22; Math. Models Comput. Simul., 9:5 (2017), 529–543
Citation in format AMSBIB
\Bibitem{KraKucLad17}
\by M.~M.~Krasnov, P.~A.~Kuchugov, M.~E.~Ladonkina, V.~F.~Tishkin
\paper Discontinuous Galerkin method on three-dimensional tetrahedral meshes. The usage of the operator programming method
\jour Matem. Mod.
\yr 2017
\vol 29
\issue 2
\pages 3--22
\mathnet{http://mi.mathnet.ru/mm3811}
\elib{https://elibrary.ru/item.asp?id=28912730}
\transl
\jour Math. Models Comput. Simul.
\yr 2017
\vol 9
\issue 5
\pages 529--543
\crossref{https://doi.org/10.1134/S2070048217050064}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85029745632}
Linking options:
  • https://www.mathnet.ru/eng/mm3811
  • https://www.mathnet.ru/eng/mm/v29/i2/p3
  • This publication is cited in the following 27 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:630
    Full-text PDF :203
    References:54
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024