Abstract:
We obtain continuous analytical expressions approximating the Fermi–Dirac integrals of orders j=−1/2,1/2,1,3/2,2,5/2,3,7/2 in a convenient form for calculation with reasonable accuracy (1÷4)% in a wide range of the degeneration in this paper. An approach based on the least square method for approximation was used. The demands to the approximation of integrals, to the range of variation of order j and to the definitional domain are considered in terms of the use of Fermi–Dirac integrals to determine the properties of metals and semiconductors.
Citation:
O. N. Koroleva, A. V. Mazhukin, V. I. Mazhukin, P. V. Breslavskiy, “Analytical approximation of the Fermi–Dirac integrals of half-integer and integer orders”, Mat. Model., 28:11 (2016), 55–63; Math. Models Comput. Simul., 9:3 (2017), 383–389
This publication is cited in the following 16 articles:
Bahtiyar A. Mamedov, Duru Özgül, “Accurate analytical evaluation of the generalized logarithmic and double Fermi–Dirac and Bose–Einstein functions”, Contrib. Plasma Phys, 2024
Gulyamov G., Davlatov A.B., Juraev Kh.N., “Concentration, Thermodynamic Density of States, and Entropy of Electrons in Semiconductor Nanowires”, Low Temp. Phys., 48:2 (2022), 148–156
K. Vanlalawmpuia, Suman Kr Mitra, Brinda Bhowmick, “An analytical drain current model of Germanium source vertical tunnel field effect transistor”, Micro and Nanostructures, 165 (2022), 207197
Zh. Yan, G. Gou, J. Ren, F. Wu, Ya. Shen, H. Tian, Y. Yang, T.-L. Ren, “Ambipolar transport compact models for two-dimensional materials based field-effect transistors”, Tsinghua Sci. Technol., 26:5 (2021), 574–591
A. Ueda, Y. Zhang, N. Sano, H. Imamura, Y. Iwasa, “Ambipolar device simulation based on the drift-diffusion model in ion-gated transition metal dichalcogenide ransistors”, npj Comput. Mater., 6:1 (2020), 24
J. P. Selvaggi, J. A. Selvaggi, “The application of real convolution for analytically evaluating Fermi-Dirac-type and Bose–Einstein-type integrals”, J. Complex Anal., 2018, 5941485
A. AlQurashi, C. R. Selvakumar, “A new approximation of Fermi-Dirac integrals of order 1/2 for degenerate semiconductor devices”, Superlattices Microstruct., 118 (2018), 308–318
V. M. Chetverikov, “The spatial distribution of magnetization in a ferromagnetic semiconductor thin film”, Mosc. Univ. Phys. Bull., 73:6 (2018), 592–598
F. Lanzini, H. O. Di Rocco, “An implementation of the average atom model using the thermodynamic consistency condition: application to Ar”, Acta Phys. Pol. A, 134:6 (2018), 1126–1133
O. N. Koroleva, A. V. Mazhukin, “Thermophysical characteristics of an electron gas of silicon in the region of phase transformations”, Keldysh Institute preprints, 2018, 73–27
N. N. Kalitkin, S. A. Kolganov, “Calculation of the Fermi–Dirac functions with exponentially convergent quadratures”, Math. Models Comput. Simul., 10:4 (2018), 472–482
O. N. Koroleva, A. V. Mazhukin, “Determination of thermal conductivity and heat capacity of silicon electron gas”, Math. Montisnigri, 40 (2017), 99–109
O. N. Koroleva, V. I. Mazhukin, A. V. Mazhukin, “Calculation of silicon band gap by means of Fermi-Dirac integrals”, Math. Montisnigri, 38 (2017), 49–62
O. N. Koroleva, A. V. Mazhukin, “Determination of transport properties of silicon electron gas”, Math. Montisnigri, 39 (2017), 57–66
A. V. Mazhukin, O. N. Koroleva, V. I. Mazhukin, A. V. Shapranov, “Continual and molecular dynamics approaches in determining thermal properties of silicon”, Third International Conference on Applications of Optics and Photonics, Proceedings of SPIE, 10453, ed. M. Costa, SPIE-Int. Soc. Optical Engineering, 2017, UNSP 104530Y
Mazhukin V.I., Koroleva O.N., Mazhukin A.V., Aleshchenko Yu.A., “Effect of Degenerate Carriers on Si Band Gap Narrowing”, Bull. Lebedev Phys. Inst., 44:7 (2017), 198–201