Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2003, Volume 15, Number 11, Pages 45–50 (Mi mm375)  

This article is cited in 2 scientific papers (total in 2 papers)

Orthogonal polynomials in regression observation models

B. M. Dorozhko

Institute for Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences
Full-text PDF (597 kB) Citations (2)
References:
Abstract: We consider basic invariant characteristics of normed covariance matrix. Numerical modeling results of normed covariance matrix in regression models by orthogonal polynomials are discussed. We represent recommendations to control orthogonal polynomials.
Received: 24.10.2002
Bibliographic databases:
Language: Russian
Citation: B. M. Dorozhko, “Orthogonal polynomials in regression observation models”, Matem. Mod., 15:11 (2003), 45–50
Citation in format AMSBIB
\Bibitem{Dor03}
\by B.~M.~Dorozhko
\paper Orthogonal polynomials in regression observation models
\jour Matem. Mod.
\yr 2003
\vol 15
\issue 11
\pages 45--50
\mathnet{http://mi.mathnet.ru/mm375}
\zmath{https://zbmath.org/?q=an:1045.62067}
Linking options:
  • https://www.mathnet.ru/eng/mm375
  • https://www.mathnet.ru/eng/mm/v15/i11/p45
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:557
    Full-text PDF :323
    References:66
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024