Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2016, Volume 28, Number 6, Pages 89–97 (Mi mm3741)  

Parallel multigrid technique: reduction to independent problems

S. I. Martynenko, V. M. Volokhov, L. S. Yanovskiy

Institute of Problems of Chemical Physics of RAS
References:
Abstract: There are two obvious reasons why a palallel multigrid algorithm may perform unsatisfactorily: load imbalance and communication overhead. Large communication overhead and processor idleness take place on very coarse grids. The paper represents the further development of the parallel robust multigrid technique based on the reduction of the finite-difference boundary value problem to a set of independent problems. Robust Multigrid Technique is a single grid algorithm used essential multigrid principle to minimize the number of the problem-dependent components. Usage of the same grid for the correction computing eliminates all problems with load imbalance and communication overhead on the coarse grids. In some cases volume of the stored data and execution time can be reduced and almost full parallelism can be obtained. Results of the numerical experiments with finite-difference scheme of the sixth approximation order are given.
Keywords: geometric multigrid methods, parallel algorithm.
Funding agency Grant number
Russian Science Foundation 15-11-30012
Received: 13.07.2015
English version:
Mathematical Models and Computer Simulations, 2017, Volume 9, Issue 1, Pages 120–126
DOI: https://doi.org/10.1134/S2070048217010100
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. I. Martynenko, V. M. Volokhov, L. S. Yanovskiy, “Parallel multigrid technique: reduction to independent problems”, Matem. Mod., 28:6 (2016), 89–97; Math. Models Comput. Simul., 9:1 (2017), 120–126
Citation in format AMSBIB
\Bibitem{MarVolYan16}
\by S.~I.~Martynenko, V.~M.~Volokhov, L.~S.~Yanovskiy
\paper Parallel multigrid technique: reduction to independent problems
\jour Matem. Mod.
\yr 2016
\vol 28
\issue 6
\pages 89--97
\mathnet{http://mi.mathnet.ru/mm3741}
\elib{https://elibrary.ru/item.asp?id=26414271}
\transl
\jour Math. Models Comput. Simul.
\yr 2017
\vol 9
\issue 1
\pages 120--126
\crossref{https://doi.org/10.1134/S2070048217010100}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85011961039}
Linking options:
  • https://www.mathnet.ru/eng/mm3741
  • https://www.mathnet.ru/eng/mm/v28/i6/p89
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024