Abstract:
Fermi–Dirak functions of integer index are widely used in problems of electronic transport in dense substances. Polynomial approximations are constructed for its quick computation. A simple algorithm is built for finding the coefficients of these approximations based on interpolation with a special linear-trigonometric grid nodes. Represented that this grid provides results close to optimal. Such coefficients are founded for functions of index 1, 2, 3, which provide ratio error 2⋅10−16 with 9 free parametrs.
Citation:
N. N. Kalitkin, S. A. Kolganov, “Prescision approximations for Fermi–Dirak functions of integer index”, Mat. Model., 28:3 (2016), 23–32; Math. Models Comput. Simul., 8:6 (2016), 607–614
This publication is cited in the following 4 articles:
N. N. Kalitkin, S. A. Kolganov, “Postroenie approksimatsii, udovletvoryayuschikh chebyshevskomu alternansu”, Preprinty IPM im. M. V. Keldysha, 2020, 091, 33 pp.
N. N. Kalitkin, S. A. Kolganov, “Correction of the precision approximations of the Fermi–Dirac functions of integer index”, Math. Models Comput. Simul., 9:5 (2017), 554–560
N. N. Kalitkin, S. A. Kolganov, “Calculation of the Fermi–Dirac functions with exponentially convergent quadratures”, Math. Models Comput. Simul., 10:4 (2018), 472–482
Kalitkin N.N. Kolganov S.A., “Quadrature Formulas With Exponential Convergence and Calculation of the Fermi-Dirac Integrals”, Dokl. Math., 95:2 (2017), 157–160