Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2016, Volume 28, Number 2, Pages 65–85 (Mi mm3700)  

This article is cited in 8 scientific papers (total in 8 papers)

Micro-macro Fokker–Planck–Kolmogorov models for a gas of rigid spheres

S. V. Bogomolov, N. B. Esikova, A. E. Kuvshinnikov

Lomonosov Moscow State University
Full-text PDF (405 kB) Citations (8)
References:
Abstract: Macroscopic system of gas dynamic equations, differing from Navier–Stokes and quasi gas dynamic ones, is derived from a stochastic microscopic model of a hard sphere gas in a phase space. The model is diffusive in velocity space and valid for moderate Knudsen numbers. The main pecularity of our derivation is more accurate velocity averaging due to analitical solving stochastic differential equations with respect to Wiener mesure which describe our original meso model. It is shown at an example of a shock wave front structure that our approach leads to larger than Navier–Stokes front widening that corresponds to reality. The numerical solution is performed by a well suited to super computer applications special «discontinious» particle method.
Keywords: Boltzmann equation, Kolmogorov–Fokker–Planck equation, Navier–Stokes equation; random processes, stochastic differential equations with respect to Poisson and Wiener measures, particle method.
Received: 25.05.2015
English version:
Mathematical Models and Computer Simulations, 2016, Volume 8, Issue 5, Pages 533–547
DOI: https://doi.org/10.1134/S2070048216050069
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. V. Bogomolov, N. B. Esikova, A. E. Kuvshinnikov, “Micro-macro Fokker–Planck–Kolmogorov models for a gas of rigid spheres”, Matem. Mod., 28:2 (2016), 65–85; Math. Models Comput. Simul., 8:5 (2016), 533–547
Citation in format AMSBIB
\Bibitem{BogEsiKuv16}
\by S.~V.~Bogomolov, N.~B.~Esikova, A.~E.~Kuvshinnikov
\paper Micro-macro Fokker--Planck--Kolmogorov models for a gas of rigid spheres
\jour Matem. Mod.
\yr 2016
\vol 28
\issue 2
\pages 65--85
\mathnet{http://mi.mathnet.ru/mm3700}
\elib{https://elibrary.ru/item.asp?id=25707625}
\transl
\jour Math. Models Comput. Simul.
\yr 2016
\vol 8
\issue 5
\pages 533--547
\crossref{https://doi.org/10.1134/S2070048216050069}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84987941316}
Linking options:
  • https://www.mathnet.ru/eng/mm3700
  • https://www.mathnet.ru/eng/mm/v28/i2/p65
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
    Statistics & downloads:
    Abstract page:564
    Full-text PDF :269
    References:102
    First page:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024