Loading [MathJax]/jax/output/SVG/config.js
Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2016, Volume 28, Number 2, Pages 6–18 (Mi mm3695)  

This article is cited in 24 scientific papers (total in 24 papers)

On a one family of quasimonotone finite-difference schemes of the second order of approximation

Valentin A. Gushchinab

a Institute for Computer Aided Design of the Russian Academy of Sciences
b Moscow Institute of Physics and Technology
References:
Abstract: Using a simple model of a linear transport equation a family of hybrid monotone finite difference schemes has been constructed. By the analysis of the differential approximation it was shown that the resulting family has a second-order approximation in the spatial variable, has minimal scheme viscosity and dispersion and monotonous. It is shown that the region of operability of the base schemes (Modified Central Difference Schemes (MCDS) and Modified Upwind Difference Schemes (MUDS)) is a non-empty set. The local criterion for switching between the base schemes is based on the sign of the product of the velocity, the first and second differences of the transferred functions at the considered point. On the solution of the Cauchy problem provides a graphical comparison of the calculation results obtained using the known schemes of the first, second and third order approximation.
Keywords: finite difference schemes, monotonicity of finite difference schemes, hybrid finite difference schemes, criterion for switching.
Received: 29.06.2015
English version:
Mathematical Models and Computer Simulations, 2016, Volume 8, Issue 5, Pages 487–496
DOI: https://doi.org/10.1134/S2070048216050094
Bibliographic databases:
Document Type: Article
UDC: 519.683
Language: Russian
Citation: Valentin A. Gushchin, “On a one family of quasimonotone finite-difference schemes of the second order of approximation”, Mat. Model., 28:2 (2016), 6–18; Math. Models Comput. Simul., 8:5 (2016), 487–496
Citation in format AMSBIB
\Bibitem{Gus16}
\by Valentin~A.~Gushchin
\paper On a one family of quasimonotone finite-difference schemes of the second order of approximation
\jour Mat. Model.
\yr 2016
\vol 28
\issue 2
\pages 6--18
\mathnet{http://mi.mathnet.ru/mm3695}
\elib{https://elibrary.ru/item.asp?id=25707620}
\transl
\jour Math. Models Comput. Simul.
\yr 2016
\vol 8
\issue 5
\pages 487--496
\crossref{https://doi.org/10.1134/S2070048216050094}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84987899237}
Linking options:
  • https://www.mathnet.ru/eng/mm3695
  • https://www.mathnet.ru/eng/mm/v28/i2/p6
  • This publication is cited in the following 24 articles:
    1. V A Gushchin, I A Smirnova, “Mathematical modeling of the vortices couple dynamics in a stratified fluid”, J. Phys.: Conf. Ser., 2910:1 (2024), 012029  crossref
    2. V. A. Gushchin, I. A. Smirnova, THE 5TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN INFORMATION SYSTEMS (CIIS 2022): Intelligent and Resilient Digital Innovations for Sustainable Living, 2968, THE 5TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN INFORMATION SYSTEMS (CIIS 2022): Intelligent and Resilient Digital Innovations for Sustainable Living, 2023, 060003  crossref
    3. V. A. Guschin, “Razrabotka i primenenie metoda rasschepleniya po fizicheskim faktoram dlya issledovaniya techenii neszhimaemoi zhidkosti”, Kompyuternye issledovaniya i modelirovanie, 14:4 (2022), 715–739  mathnet  crossref
    4. Alexander Sukhinov, Alexander Chistyakov, Elena Timofeeva, Alla Nikitina, Yulia Belova, “The Construction and Research of the Modified “Upwind Leapfrog” Difference Scheme with Improved Dispersion Properties for the Korteweg–de Vries Equation”, Mathematics, 10:16 (2022), 2922  crossref
    5. Margarita N. Favorskaya, Ilia S. Nikitin, Natalia S. Severina, Smart Innovation, Systems and Technologies, 274, Advances in Theory and Practice of Computational Mechanics, 2022, 1  crossref
    6. Elena Timofeeva, Aleksandr Sukhinov, Aleksandr Chistiakov, Nadezhda Timofeeva, Lecture Notes in Networks and Systems, 424, Mathematics and its Applications in New Computer Systems, 2022, 371  crossref
    7. Alexander Sukhinov, Alexander Chistyakov, Inna Kuznetsova, Yulia Belova, Elena Rahimbaeva, “Development and Research of a Modified Upwind Leapfrog Scheme for Solving Transport Problems”, Mathematics, 10:19 (2022), 3564  crossref
    8. Valentin A. Gushchin, Irina A. Smirnova, Smart Innovation, Systems and Technologies, 274, Advances in Theory and Practice of Computational Mechanics, 2022, 77  crossref
    9. V. A. Gushchin, I. A. Smirnova, APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 13th International Hybrid Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS'21, 2522, APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 13th International Hybrid Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS'21, 2022, 080002  crossref
    10. Valentin A. Gushchin, Vasilii G. Kondakov, Irina A. Smirnova, Smart Innovation, Systems and Technologies, 217, Applied Mathematics and Computational Mechanics for Smart Applications, 2021, 35  crossref
    11. Valentin A. Gushchin, Smart Innovation, Systems and Technologies, 215, Smart Modelling for Engineering Systems, 2021, 25  crossref
    12. A. I. Sukhinov, I. Yu. Kuznetsova, A. E. Chistyakov, E. A. Protsenko, Yu. V. Belova, “Studying the Accuracy and Applicability of the Finite Difference Scheme for Solving the Diffusion–Convection Problem at Large Grid Péclet Numbers”, J Appl Mech Tech Phy, 62:7 (2021), 1255  crossref
    13. Gushchin V.A., Smirnova I.A., “On a Vortex Couple Dynamics in Fluid”, AIP Conference Proceedings, 2302, ed. Todorov M., Amer Inst Physics, 2020, 120006  crossref  isi
    14. A. I. Sukhinov, A. E. Chistyakov, E. A. Protsenko, A. M. Atayan, “Lineinaya kombinatsiya skhem «kabare» i «krest» s vesovymi koeffitsientami, poluchennymi iz usloviya minimizatsii poryadka pogreshnosti approksimatsii”, Chebyshevskii sb., 21:4 (2020), 243–256  mathnet  crossref
    15. V. A. Gushchin, I. A. Smirnova, “Mathematical modeling of spot dynamics in a stratified medium”, Comput. Math. Math. Phys., 60:5 (2020), 879–894  mathnet  crossref  crossref  isi  elib
    16. V A Gushchin, I A Smirnova, “On the formation of a vortex couple in fluid”, IOP Conf. Ser.: Mater. Sci. Eng., 927:1 (2020), 012050  crossref
    17. Valentin A. Gushchin, Irina A. Smirnova, Smart Innovation, Systems and Technologies, 173, Advances in Theory and Practice of Computational Mechanics, 2020, 11  crossref
    18. Lakhmi C. Jain, Margarita N. Favorskaya, Ilia S. Nikitin, Dmitry L. Reviznikov, Smart Innovation, Systems and Technologies, 173, Advances in Theory and Practice of Computational Mechanics, 2020, 1  crossref
    19. A.I. Sukhinov, I.Y. Kuznetsova, A.E. Chistyakov, E.A. Protsenko, Y.V. Belova, “Study of the accuracy and applicability of the difference scheme for solving the diffusion-convection problem at large grid Péclet numbers”, Comp. Contin. Mech., 13:4 (2020), 437  crossref
    20. A. I. Sukhinov, A. E. Chistyakov, “CABARET difference scheme with improved dispersion properties”, Math. Models Comput. Simul., 11:6 (2019), 867–876  mathnet  crossref  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:549
    Full-text PDF :138
    References:74
    First page:14
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025