Abstract:
New method of data assimilation for the correction of model computations is developed and applied.
The method is based on the path of least resistance principle and uses the theory of diffusion
stochastic processes and stochastic differential equations. Derived from this principle the
system of linear equations is needed to be solved to apply this method. This system may be considered as a generalization of the known Kalman scheme when dynamics of the model is taken
into account.
The method is applied to numerical experiments in conjunction with model circulation HYCOM
and satellite sea level observational data from archive AVISO for Atlantic. The skill of the
method is assessed using the results of the experiments. The model output is compared with twin
experiments, namely the model calculation without assimilation and one comes to the conclusion
that the proposed method is consistent and robust.
Keywords:
data assimilation methods, path of least resistance principle, ocean dynamics models.
Citation:
K. P. Belyaev, A. A. Kuleshov, N. P. Tuchkova, C. A. S. Tanajura, “Method of dynamic model results correction by observational data and its application in oceanography”, Mat. Model., 27:12 (2015), 20–32; Math. Models Comput. Simul., 8:4 (2016), 391–400
\Bibitem{BelKulTuc15}
\by K.~P.~Belyaev, A.~A.~Kuleshov, N.~P.~Tuchkova, C.~A.~S.~Tanajura
\paper Method of dynamic model results correction by observational data and its application in oceanography
\jour Mat. Model.
\yr 2015
\vol 27
\issue 12
\pages 20--32
\mathnet{http://mi.mathnet.ru/mm3676}
\elib{https://elibrary.ru/item.asp?id=25707583}
\transl
\jour Math. Models Comput. Simul.
\yr 2016
\vol 8
\issue 4
\pages 391--400
\crossref{https://doi.org/10.1134/S2070048216040049}
Linking options:
https://www.mathnet.ru/eng/mm3676
https://www.mathnet.ru/eng/mm/v27/i12/p20
This publication is cited in the following 9 articles:
K. P. Belyaev, A. A. Kuleshov, N. P. Tuchkova, “Approximation of the Numerical Simulation in Conjunction with One Data Assimilation Method by Stochastic Process of Ornstein–Uhlenbeck Type”, Lobachevskii J Math, 42:8 (2021), 1800
K. P. Belyaev, A. A. Kuleshov, N. P. Tuchkova, “Correction of systematic error and estimation of confidence limits for one data assimilation method”, Lobachevskii J. Math., 41:10, SI (2020), 1964–1970
K. P. Belyaev, A. A. Kuleshov, N. P. Tuchkova, “The stability problem for a dynamic system with the assimilation of observational data”, Lobachevskii J. Math., 40:7, SI (2019), 911–917
K. P. Belyaev, E. G. Morozov, N. P. Tuchkova, “Meridional mass transport of bottom water in the south atlantic”, Izv. Atmos. Ocean. Phys., 55:4 (2019), 365–373
K. P. Belyaev, A. A. Kuleshov, I. N. Smirnov, “Analiz rezultatov modelirovaniya dinamiki okeana s primeneniem razlichnykh metodov usvoeniya dannykh nablyudenii”, Preprinty IPM im. M. V. Keldysha, 2018, 037, 17 pp.
K. P. Belyaev, A. A. Kuleshov, N. P. Tuchkova, “Modelirovanie dinamiki okeana s usvoeniem dannykh nablyudenii”, Preprinty IPM im. M. V. Keldysha, 2018, 133, 13 pp.
I. B. Petrov, “Problems of simulation of natural and anthropogenous processes in the Arctic zone of the Russian Federation”, Math. Models Comput. Simul., 11:2 (2019), 226–246
K. P. Belyaev, A. A. Kuleshov, I. N. Smirnov, C. A. S. Tanajura, “Comparison of data assimilation methods into hydrodynamic models of ocean circulation”, Math. Models Comput. Simul., 11:4 (2019), 564–574
Belyaev K.P., Kirchner I., Kuleshov A.A., Tuchkova N.P., “Numerical Realization of Hybrid Data Assimilation Algorithm in Ensemble Experiments With the Mpiesm Coupled Model”, Ocean in Motion: Circulation, Waves, Polar Oceanography, Springer Oceanography, eds. Velarde M., Tarakanov R., Marchenko A., Springer International Publishing Ag, 2018, 447–459