Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2015, Volume 27, Number 12, Pages 20–32 (Mi mm3676)  

This article is cited in 9 scientific papers (total in 9 papers)

Method of dynamic model results correction by observational data and its application in oceanography

K. P. Belyaevabc, A. A. Kuleshovd, N. P. Tuchkovac, C. A. S. Tanajurab

a Shirshov Institute of Oceanology of Russian Academy of Science
b Federal University of Bahia, Brazil
c Dorodnitsyn Computer Center of Russian Academy of Science
d Keldysh Institute of Applied Mathematics of Russian Academy of Science
Full-text PDF (720 kB) Citations (9)
References:
Abstract: New method of data assimilation for the correction of model computations is developed and applied. The method is based on the path of least resistance principle and uses the theory of diffusion stochastic processes and stochastic differential equations. Derived from this principle the system of linear equations is needed to be solved to apply this method. This system may be considered as a generalization of the known Kalman scheme when dynamics of the model is taken into account.
The method is applied to numerical experiments in conjunction with model circulation HYCOM and satellite sea level observational data from archive AVISO for Atlantic. The skill of the method is assessed using the results of the experiments. The model output is compared with twin experiments, namely the model calculation without assimilation and one comes to the conclusion that the proposed method is consistent and robust.
Keywords: data assimilation methods, path of least resistance principle, ocean dynamics models.
Funding agency Grant number
Russian Science Foundation 14-11-00434
Russian Foundation for Basic Research 14-05-00363
Received: 19.03.2015
English version:
Mathematical Models and Computer Simulations, 2016, Volume 8, Issue 4, Pages 391–400
DOI: https://doi.org/10.1134/S2070048216040049
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: K. P. Belyaev, A. A. Kuleshov, N. P. Tuchkova, C. A. S. Tanajura, “Method of dynamic model results correction by observational data and its application in oceanography”, Mat. Model., 27:12 (2015), 20–32; Math. Models Comput. Simul., 8:4 (2016), 391–400
Citation in format AMSBIB
\Bibitem{BelKulTuc15}
\by K.~P.~Belyaev, A.~A.~Kuleshov, N.~P.~Tuchkova, C.~A.~S.~Tanajura
\paper Method of dynamic model results correction by observational data and its application in oceanography
\jour Mat. Model.
\yr 2015
\vol 27
\issue 12
\pages 20--32
\mathnet{http://mi.mathnet.ru/mm3676}
\elib{https://elibrary.ru/item.asp?id=25707583}
\transl
\jour Math. Models Comput. Simul.
\yr 2016
\vol 8
\issue 4
\pages 391--400
\crossref{https://doi.org/10.1134/S2070048216040049}
Linking options:
  • https://www.mathnet.ru/eng/mm3676
  • https://www.mathnet.ru/eng/mm/v27/i12/p20
  • This publication is cited in the following 9 articles:
    1. K. P. Belyaev, A. A. Kuleshov, N. P. Tuchkova, “Approximation of the Numerical Simulation in Conjunction with One Data Assimilation Method by Stochastic Process of Ornstein–Uhlenbeck Type”, Lobachevskii J Math, 42:8 (2021), 1800  crossref
    2. K. P. Belyaev, A. A. Kuleshov, N. P. Tuchkova, “Correction of systematic error and estimation of confidence limits for one data assimilation method”, Lobachevskii J. Math., 41:10, SI (2020), 1964–1970  crossref  mathscinet  zmath  isi
    3. K. P. Belyaev, A. A. Kuleshov, N. P. Tuchkova, “The stability problem for a dynamic system with the assimilation of observational data”, Lobachevskii J. Math., 40:7, SI (2019), 911–917  crossref  mathscinet  zmath  isi
    4. K. P. Belyaev, E. G. Morozov, N. P. Tuchkova, “Meridional mass transport of bottom water in the south atlantic”, Izv. Atmos. Ocean. Phys., 55:4 (2019), 365–373  crossref  isi
    5. K. P. Belyaev, A. A. Kuleshov, I. N. Smirnov, “Analiz rezultatov modelirovaniya dinamiki okeana s primeneniem razlichnykh metodov usvoeniya dannykh nablyudenii”, Preprinty IPM im. M. V. Keldysha, 2018, 037, 17 pp.  mathnet  crossref  elib
    6. K. P. Belyaev, A. A. Kuleshov, N. P. Tuchkova, “Modelirovanie dinamiki okeana s usvoeniem dannykh nablyudenii”, Preprinty IPM im. M. V. Keldysha, 2018, 133, 13 pp.  mathnet  crossref  elib
    7. I. B. Petrov, “Problems of simulation of natural and anthropogenous processes in the Arctic zone of the Russian Federation”, Math. Models Comput. Simul., 11:2 (2019), 226–246  mathnet  crossref
    8. K. P. Belyaev, A. A. Kuleshov, I. N. Smirnov, C. A. S. Tanajura, “Comparison of data assimilation methods into hydrodynamic models of ocean circulation”, Math. Models Comput. Simul., 11:4 (2019), 564–574  mathnet  crossref
    9. Belyaev K.P., Kirchner I., Kuleshov A.A., Tuchkova N.P., “Numerical Realization of Hybrid Data Assimilation Algorithm in Ensemble Experiments With the Mpiesm Coupled Model”, Ocean in Motion: Circulation, Waves, Polar Oceanography, Springer Oceanography, eds. Velarde M., Tarakanov R., Marchenko A., Springer International Publishing Ag, 2018, 447–459  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:382
    Full-text PDF :154
    References:61
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025