Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2015, Volume 27, Number 9, Pages 89–109 (Mi mm3651)  

This article is cited in 4 scientific papers (total in 4 papers)

Polynomial approximation of the high orders

N. D. Dikusar

JINR
Full-text PDF (805 kB) Citations (4)
References:
Abstract: A new approach is proposed to high-order polynomial approximation (smoothing), based on the basic elements method (BEM.) The $n^{\mathrm{th}}$-degree BEM-polynomial is expressed using four basic elements given on a three-point grid: $x_0+\alpha<x_0<x_0+\beta$, $\alpha\beta<0$. Formulae have been obtained for calculating the coefficients of the 12-th order polynomial model depending on the interval length, the continuous parameters $\alpha$, $\beta$ and the derivatives $f^{(m)}(x_0+\nu)$, $\nu=\alpha, \beta, 0$, $m=\overline{0,3}$. Application of BEM-polynomials of high degrees for piecewise polynomial approximation (PWA) and smoothing enhances the stability and accuracy of calculations, as the grid step increases, and reduces the computing complexity as well.
Keywords: high degree polynomials, piecewise polynomial approximation, least squares method, basic elements method, curve segmentation, smoothing, efficiency of algorithms.
Received: 27.08.2014
English version:
Mathematical Models and Computer Simulations, 2016, Volume 8, Issue 2, Pages 183–200
DOI: https://doi.org/10.1134/S2070048216020058
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: N. D. Dikusar, “Polynomial approximation of the high orders”, Matem. Mod., 27:9 (2015), 89–109; Math. Models Comput. Simul., 8:2 (2016), 183–200
Citation in format AMSBIB
\Bibitem{Dik15}
\by N.~D.~Dikusar
\paper Polynomial approximation of the high orders
\jour Matem. Mod.
\yr 2015
\vol 27
\issue 9
\pages 89--109
\mathnet{http://mi.mathnet.ru/mm3651}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3545216}
\elib{https://elibrary.ru/item.asp?id=24850119}
\transl
\jour Math. Models Comput. Simul.
\yr 2016
\vol 8
\issue 2
\pages 183--200
\crossref{https://doi.org/10.1134/S2070048216020058}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84962710513}
Linking options:
  • https://www.mathnet.ru/eng/mm3651
  • https://www.mathnet.ru/eng/mm/v27/i9/p89
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024