Abstract:
The application subhierarchic method to integral equations for generalized computational grids. The justification of the subhierarchic method was produced. Numerical results for the problem of diffraction by a nonplanar perfectly conducting screen are presented.
Citation:
M. Y. Medvedik, “Solution of integral equations by means of subhierarchic method for generalized computational grids”, Mat. Model., 27:4 (2015), 81–96; Math. Models Comput. Simul., 7:6 (2015), 570–580
A. O. Lapich, M. Y. Medvedik, “Algorithm for Searching Inhomogeneities in Inverse Nonlinear Diffraction Problems”, jour, 166:3 (2024), 395
A. O. Lapich, M. Yu. Medvedik, “Metod mikrovolnovoi tomografii dlya resheniya obratnoi zadachi na telakh tsilindricheskoi formy”, Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauki, 2024, no. 1, 107–117
A. O. Lapich, M. Yu. Medvedik, “Algorithm of the Search for Inhomogeneities in the Inverse Nonlinear Diffraction Problems”, Tech. Phys., 69:9 (2024), 2454
A. O. Lapich, M. Yu. Medvedik, “An Iterative Scheme for Solving a Lippmann–Schwinger Nonlinear Integral Equation by the Galerkin Method”, Tech. Phys. Lett., 49:6 (2023), 67
A. O. Lapich, M. Yu. Medvedik, “Solution of a scalar two-dimensional nonlinear diffraction problem for objects of arbitrary shape”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 165:2 (2023), 167–177
Mikhail Medvedik, Marina Moskaleva, Yury Smirnov, Communications in Computer and Information Science, 965, Supercomputing, 2019, 114