Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2015, Volume 27, Number 3, Pages 33–48 (Mi mm3580)  

Spline in tension method for non-linear two point boundary value problems on a geometric mesh

J. Talwara, R. K. Mohantyb

a University of Delhi, Department of Mathematics, Faculty of Mathematical Sciences, Delhi-110 007, India
b South Asian University, Department of Applied Mathematics, Akbar Bhawan, Chanakyapuri, New Delhi-110 021, India
References:
Abstract: In this paper, we discuss a new method based on spline in tension approximation for the numerical solution of two-point non-linear boundary value problems on uniform mesh. The method is of order four. We have discussed the derivation and the convergence of the proposed method in detail. The method is extended to non-uniform mesh. Numerical results are given to illustrate the efficiency of the proposed method.
Keywords: Spline in tension; Non polynomial spline; Convergence analysis; Root mean square errors; Variable mesh; Burgers’ equation.
Funding agency Grant number
Council of Scientific and Industrial Research 09/045(0836)2009-EMR-I
This research was supported by "The Council of Scientific and Industrial Research" under research grant No. 09/045(0836)2009-EMR-I.
Received: 25.11.2013
Bibliographic databases:
Document Type: Article
Language: English
Citation: J. Talwar, R. K. Mohanty, “Spline in tension method for non-linear two point boundary value problems on a geometric mesh”, Matem. Mod., 27:3 (2015), 33–48
Citation in format AMSBIB
\Bibitem{TalMoh15}
\by J.~Talwar, R.~K.~Mohanty
\paper Spline in tension method for non-linear two point boundary value problems on a geometric mesh
\jour Matem. Mod.
\yr 2015
\vol 27
\issue 3
\pages 33--48
\mathnet{http://mi.mathnet.ru/mm3580}
\elib{https://elibrary.ru/item.asp?id=23421481}
Linking options:
  • https://www.mathnet.ru/eng/mm3580
  • https://www.mathnet.ru/eng/mm/v27/i3/p33
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:260
    Full-text PDF :98
    References:50
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024