Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2015, Volume 27, Number 2, Pages 129–138 (Mi mm3576)  

This article is cited in 26 scientific papers (total in 26 papers)

On convergence rate of WENO schemes behind a shock front

N. A. Mikhailov

Russian Federal Nuclear Center Zababakhin All-Russia Research Institute of Technical Physics
References:
Abstract: The numerical analysis has shown that high order finite-volume WENO schemes have only the first order of convergence in the smooth part of weak solution behind a shock front. The order of integral convergence of difference solution is found to estimate accuracy of translation of Rankine–Hugoniot conditions through the shock.
Keywords: finite-volume WENO schemes, Rankine–Hugoniot conditions, integral convergence, order of convergence.
Received: 26.08.2013
English version:
Mathematical Models and Computer Simulations, 2015, Volume 7, Issue 5, Pages 467–474
DOI: https://doi.org/10.1134/S2070048215050075
Bibliographic databases:
Document Type: Article
UDC: 519-63
Language: Russian
Citation: N. A. Mikhailov, “On convergence rate of WENO schemes behind a shock front”, Matem. Mod., 27:2 (2015), 129–138; Math. Models Comput. Simul., 7:5 (2015), 467–474
Citation in format AMSBIB
\Bibitem{Mik15}
\by N.~A.~Mikhailov
\paper On convergence rate of WENO schemes behind a shock front
\jour Matem. Mod.
\yr 2015
\vol 27
\issue 2
\pages 129--138
\mathnet{http://mi.mathnet.ru/mm3576}
\elib{https://elibrary.ru/item.asp?id=23421477}
\transl
\jour Math. Models Comput. Simul.
\yr 2015
\vol 7
\issue 5
\pages 467--474
\crossref{https://doi.org/10.1134/S2070048215050075}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84941903187}
Linking options:
  • https://www.mathnet.ru/eng/mm3576
  • https://www.mathnet.ru/eng/mm/v27/i2/p129
  • This publication is cited in the following 26 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024