Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2014, Volume 26, Number 8, Pages 3–19 (Mi mm3503)  

This article is cited in 3 scientific papers (total in 3 papers)

Mathematical modeling of the schumpeterian dynamics of innovation

G. M. Henkin, A. A. Shananin

MIPT
Full-text PDF (375 kB) Citations (3)
References:
Abstract: This paper discusses the possibility to use the results of the asymptotic behavior of solutions of the Cauchy problem of differential-difference analogues of the Korteweg-de Vries–Burgers to model the schumpeterian dynamics of the spread of new technologies. The conditions under which an advanced technological system has no effect on technological progress in backward order.
Keywords: schumpeterian dynamics, new technologies, the Korteweg de Vries–Burgers, asymptotic of the solution of the Cauchy problem.
Received: 14.10.2013
Document Type: Article
Language: Russian
Citation: G. M. Henkin, A. A. Shananin, “Mathematical modeling of the schumpeterian dynamics of innovation”, Matem. Mod., 26:8 (2014), 3–19
Citation in format AMSBIB
\Bibitem{HenSha14}
\by G.~M.~Henkin, A.~A.~Shananin
\paper Mathematical modeling of the schumpeterian dynamics of innovation
\jour Matem. Mod.
\yr 2014
\vol 26
\issue 8
\pages 3--19
\mathnet{http://mi.mathnet.ru/mm3503}
Linking options:
  • https://www.mathnet.ru/eng/mm3503
  • https://www.mathnet.ru/eng/mm/v26/i8/p3
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:675
    Full-text PDF :254
    References:87
    First page:76
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024