Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2014, Volume 26, Number 7, Pages 97–113 (Mi mm3500)  

Improved two-equation turbulence models of free stratified turbulence

O. F. Voropaeva

Institute of Computational Technologies, Russian Academy of Sciences, Novosibirsk, Novosibirsk State University, Novosibirsk
References:
Abstract: Modified two-equation turbulence models based on a more thorough parameterization of buoy- ancy effect in the coefficients of turbulent viscosity and diffusion were developed. The models were tested on the problems of free turbulence dynamics in stably stratified media in two- and three-dimensional parabolized problem statements.
Keywords: two-equation turbulence models, stable stratification, stability function, turbulent wake, turbulent spot, pycnocline.
Received: 29.04.2013
Document Type: Article
UDC: 532.517.4
Language: Russian
Citation: O. F. Voropaeva, “Improved two-equation turbulence models of free stratified turbulence”, Matem. Mod., 26:7 (2014), 97–113
Citation in format AMSBIB
\Bibitem{Vor14}
\by O.~F.~Voropaeva
\paper Improved two-equation turbulence models of free stratified turbulence
\jour Matem. Mod.
\yr 2014
\vol 26
\issue 7
\pages 97--113
\mathnet{http://mi.mathnet.ru/mm3500}
Linking options:
  • https://www.mathnet.ru/eng/mm3500
  • https://www.mathnet.ru/eng/mm/v26/i7/p97
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024