Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2004, Volume 16, Number 2, Pages 69–86 (Mi mm345)  

This article is cited in 2 scientific papers (total in 2 papers)

2D and 3D simulation of Rayleigh–Taylor instability in cylindrical and spherical geometries

N. N. Anuchina, V. I. Volkov, N. S. Eskov, O. S. Ilyutina, O. M. Kozyrev

Russian Federal Nuclear Center E. I. Zababakhin All-Russian Scientific Research Institute of Technical Physics
References:
Abstract: Numerical simulations for cylindrical and spherical geometries are presented, which study linear and nonlinear stages of evolution of small perturbations at the interface of two incompressible, non-viscous, nonheat-conducting liquids being under effect of Rayleigh–Taylor instability. Initial perturbations of the interface are considered for two cases: when the flow is described with two and three spatial variables. Results of the numerical simulations of the linear evolution stage for the small perturbations are in good agreement with the analytical laws of small single-mode perturbation evolution, derived in linearized formulation (basic solution is at rest) for cylindrical and spherical geometries. Effect of dimensionality of space and geometry (plane, cylindrical or spherical) on the evolution of perturbations is studied for nonlinear stage. Basic characteristics of the difference methods implemented in MAH and MAH-3 software packages used for numerical studies are briefly described.
Received: 12.05.2003
Bibliographic databases:
Language: Russian
Citation: N. N. Anuchina, V. I. Volkov, N. S. Eskov, O. S. Ilyutina, O. M. Kozyrev, “2D and 3D simulation of Rayleigh–Taylor instability in cylindrical and spherical geometries”, Matem. Mod., 16:2 (2004), 69–86
Citation in format AMSBIB
\Bibitem{AnuVolEsk04}
\by N.~N.~Anuchina, V.~I.~Volkov, N.~S.~Eskov, O.~S.~Ilyutina, O.~M.~Kozyrev
\paper 2D and 3D simulation of Rayleigh--Taylor instability in cylindrical and spherical geometries
\jour Matem. Mod.
\yr 2004
\vol 16
\issue 2
\pages 69--86
\mathnet{http://mi.mathnet.ru/mm345}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2060487}
\zmath{https://zbmath.org/?q=an:1109.76322}
Linking options:
  • https://www.mathnet.ru/eng/mm345
  • https://www.mathnet.ru/eng/mm/v16/i2/p69
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024