Loading [MathJax]/jax/output/SVG/config.js
Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2012, Volume 24, Number 9, Pages 97–112 (Mi mm3313)  

This article is cited in 19 scientific papers (total in 19 papers)

On monotony of two layer in time cabaret scheme

O. A. Kovyrkinaab, V. V. Ostapenkoab

a Lavrentyev Institute of Hydrodynamics SD RAS, Novosibirsk
b Novosibirsk State University
References:
Abstract: The monotony analysis of two-layer in time cabaret scheme is carried out. It is shown that there is no local unitary correction of flux variables which would provide monotony of this scheme at any monotonous initial data. It is offered a modification of two-layer in time cabaret scheme, connected with double correction of flux variables, which in case of a variable time step guarantees monotony of the scheme at any Currant numbers at which it is stable. The results of the test calculations illustrating advantages of the modified scheme are listed.
Keywords: two-layer in time cabaret scheme, monotony, correction of flux variables.
Received: 23.01.2012
English version:
Mathematical Models and Computer Simulations, 2013, Volume 5, Issue 2, Pages 180–189
DOI: https://doi.org/10.1134/S2070048213020051
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: O. A. Kovyrkina, V. V. Ostapenko, “On monotony of two layer in time cabaret scheme”, Mat. Model., 24:9 (2012), 97–112; Math. Models Comput. Simul., 5:2 (2013), 180–189
Citation in format AMSBIB
\Bibitem{KovOst12}
\by O.~A.~Kovyrkina, V.~V.~Ostapenko
\paper On monotony of two layer in time cabaret scheme
\jour Mat. Model.
\yr 2012
\vol 24
\issue 9
\pages 97--112
\mathnet{http://mi.mathnet.ru/mm3313}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3053263}
\elib{https://elibrary.ru/item.asp?id=21276794}
\transl
\jour Math. Models Comput. Simul.
\yr 2013
\vol 5
\issue 2
\pages 180--189
\crossref{https://doi.org/10.1134/S2070048213020051}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928988073}
Linking options:
  • https://www.mathnet.ru/eng/mm3313
  • https://www.mathnet.ru/eng/mm/v24/i9/p97
  • This publication is cited in the following 19 articles:
    1. Olyana A. Kovyrkina, Vladimir V. Ostapenko, “On the accuracy of shock-capturing schemes when calculating Cauchy problems with periodic discontinuous initial data”, Russian Journal of Numerical Analysis and Mathematical Modelling, 39:2 (2024), 97  crossref
    2. M. D. Bragin, O. A. Kovyrkina, M. E. Ladonkina, V. V. Ostapenko, V. F. Tishkin, N. A. Khandeeva, “Combined numerical schemes”, Comput. Math. Math. Phys., 62:11 (2022), 1743–1781  mathnet  mathnet  crossref  crossref
    3. Kulikov Yu.M. Son E.E., “Double Shear Layer Evolution on the Non-Uniform Computational Mesh”, Phys. Scr., 96:12 (2021), 125262  crossref  isi
    4. V. V. Ostapenko, T. V. Protopopova, “On monotonicity of CABARET scheme approximating the multidimensional scalar conservation law”, Num. Anal. Appl., 13:4 (2020), 360–367  mathnet  crossref  crossref  isi
    5. Yu. M. Kulikov, E. E. Son, “Taylor-green vortex simulation using cabaret scheme in a weakly compressible formulation”, Eur. Phys. J. E, 41:3 (2018), 41  crossref  zmath  isi  scopus
    6. N. A. Zyuzina, V. V. Ostapenko, E. I. Polunina, “Splitting method for CABARET scheme approximating the non-uniform scalar conservation law”, Num. Anal. Appl., 11:2 (2018), 146–157  mathnet  crossref  crossref  isi  elib  elib
    7. V. V. Ostapenko, “On strong monotonicity of two-layer in time CABARET scheme”, Math. Models Comput. Simul., 11:1 (2019), 1–8  mathnet  crossref
    8. N. A. Zyuzina, O. A. Kovyrkina, V. V. Ostapenko, “On the monotonicity of the CABARET scheme approximating a scalar conservation law with alternating characteristic field”, Math. Models Comput. Simul., 11:1 (2019), 46–60  mathnet  crossref
    9. N. A. Zyuzina, V. V. Ostapenko, “Decay of unstable strong discontinuities in the case of a convex-flux scalar conservation law approximated by the CABARET scheme”, Comput. Math. Math. Phys., 58:6 (2018), 950–966  mathnet  crossref  crossref  isi  elib
    10. O. A. Kovyrkina, V. V. Ostapenko, “Monotonicity of the CABARET scheme approximating a hyperbolic system of conservation laws”, Comput. Math. Math. Phys., 58:9 (2018), 1435–1450  mathnet  crossref  crossref  isi  elib
    11. V. M. Goloviznin, V. A. Isakov, “Balance-characteristic scheme as applied to the shallow water equations over a rough bottom”, Comput. Math. Math. Phys., 57:7 (2017), 1140–1157  mathnet  crossref  crossref  isi  elib
    12. V. V. Ostapenko, A. A. Cherevko, “Application of the cabaret scheme for calculation of discontinuous solutions of the scalar conservation law with nonconvex flux”, Dokl. Phys., 62:10 (2017), 470–474  crossref  mathscinet  isi  scopus
    13. O. A. Kovyrkina, V. V. Ostapenko, “Monotonicity of the CABARET scheme approximating a hyperbolic equation with a sign-changing characteristic field”, Comput. Math. Math. Phys., 56:5 (2016), 783–801  mathnet  crossref  crossref  isi  elib
    14. Zyuzina N.A. Ostapenko V.V., “Monotone approximation of a scalar conservation law based on the CABARET scheme in the case of a sign-changing characteristic field”, Dokl. Math., 94:2 (2016), 538–542  crossref  mathscinet  zmath  isi  elib  scopus
    15. Zyuzina N.A. Ostapenko V.V., “On the monotonicity of the CABARET scheme approximating a scalar conservation law with a convex flux”, Dokl. Math., 93:1 (2016), 69–73  crossref  mathscinet  zmath  isi  elib  scopus
    16. Kovyrkina O. Ostapenko V., “On the Onotonicity of Multidimensional Finite Difference Schemes”, Application of mathematics in technical and natural sciences (amitans'16), AIP Conf. Proc., 1773, ed. Todorov M., Amer. Inst. Phys., 2016, 100007  crossref  isi  scopus
    17. M F Ivanov, A D Kiverin, S G Pinevich, I S Yakovenko, “Application of dissipation-free numerical method CABARET for solving gasdynamics of combustion and detonation”, J. Phys.: Conf. Ser., 754:10 (2016), 102003  crossref
    18. N. A. Zyuzina, V. V. Ostapenko, “Modification of the Cabaret scheme ensuring its high accuracy on local extrema”, Math. Models Comput. Simul., 8:3 (2016), 231–237  mathnet  crossref  elib
    19. Kovyrkina O.A., Ostapenko V.V., “On the Monotonicity of the Cabaret Scheme in the Multidimensional Case”, Dokl. Math., 91:3 (2015), 323–328  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:499
    Full-text PDF :153
    References:90
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025