Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2012, Volume 24, Number 9, Pages 35–49 (Mi mm3308)  

This article is cited in 7 scientific papers (total in 7 papers)

Monte-Carlo method for two component plasmas

A. V. Bobyleva, I. F. Potapenkob, S. A. Karpovc

a Department of Mathematics University of Karlstad, Sweden
b Keldysh Institute of Applied Mathematics, RAS
c Moscow Engineering Physical Institute (NNRU MIFI)
Full-text PDF (958 kB) Citations (7)
References:
Abstract: The direct simulation method of Monte-Carlo type for Coulomb collisions in the case of two component plasma is considered. The illustrative numerical simulation of the initial distribution relaxation for two sorts of particles in 3D velocity space is performed. Simulation results are compared with the numerical results based on the completely conservative finite difference schemes for the Landau–Fokker–Planck equation. Estimation of calculation accuracy is given for the wide range of numerical parameters.
Keywords: Boltzmann equation, nonlinear Landau–Fokker–Planck kinetic equation, Coulomb collisions, Monte-Carlo method, temperature relaxation.
Received: 13.03.2012
Bibliographic databases:
Document Type: Article
UDC: 517.958:52/59
Language: Russian
Citation: A. V. Bobylev, I. F. Potapenko, S. A. Karpov, “Monte-Carlo method for two component plasmas”, Matem. Mod., 24:9 (2012), 35–49
Citation in format AMSBIB
\Bibitem{BobPotKar12}
\by A.~V.~Bobylev, I.~F.~Potapenko, S.~A.~Karpov
\paper Monte-Carlo method for two component plasmas
\jour Matem. Mod.
\yr 2012
\vol 24
\issue 9
\pages 35--49
\mathnet{http://mi.mathnet.ru/mm3308}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3053259}
Linking options:
  • https://www.mathnet.ru/eng/mm3308
  • https://www.mathnet.ru/eng/mm/v24/i9/p35
    Cycle of papers
    This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:478
    Full-text PDF :155
    References:63
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024