Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2012, Volume 24, Number 6, Pages 91–108 (Mi mm3287)  

This article is cited in 2 scientific papers (total in 2 papers)

Numerical methods of Lagrange particle-points for one-dimensional gas dynamics wave equations

V. E. Troshchiev, N. S. Bochkarev

SRC RF TRINITI, 142190, Troitsk, Moscow Region, Russia
Full-text PDF (584 kB) Citations (2)
References:
Abstract: In the paper we consider the construction of numerical methods of computational gas dynamics based on the approximation of the second order nonlinear wave equations (NWE). Thes approach of "NWE” allows one to construct finite difference and finite elements schemes with cells of balance (conservative cells) both in the “finite volume” and lagrange “particle-points” framework. Therefore, numerical methods based on the approximations of NWE are of the great interest for the solution of one- and multi-dimensional problems of computational gas dynamics. In this paper the construction and investigation of discrete models of ”NWE” is performed for one dimensional gas dynamics problems in the Lagrange form and the results of numerical experiments are discussed.
Keywords: gas dynamics equations, Lagrange variable, nonlinear wave equations, finite difference schemes, finite elements schemes, particle-points method.
Received: 26.09.2011
English version:
Mathematical Models and Computer Simulations, 2013, Volume 5, Issue 1, Pages 37–49
DOI: https://doi.org/10.1134/S2070048213010110
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. E. Troshchiev, N. S. Bochkarev, “Numerical methods of Lagrange particle-points for one-dimensional gas dynamics wave equations”, Matem. Mod., 24:6 (2012), 91–108; Math. Models Comput. Simul., 5:1 (2013), 37–49
Citation in format AMSBIB
\Bibitem{TroBoc12}
\by V.~E.~Troshchiev, N.~S.~Bochkarev
\paper Numerical methods of Lagrange particle-points for one-dimensional gas dynamics wave equations
\jour Matem. Mod.
\yr 2012
\vol 24
\issue 6
\pages 91--108
\mathnet{http://mi.mathnet.ru/mm3287}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3026823}
\elib{https://elibrary.ru/item.asp?id=21276768}
\transl
\jour Math. Models Comput. Simul.
\yr 2013
\vol 5
\issue 1
\pages 37--49
\crossref{https://doi.org/10.1134/S2070048213010110}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928983388}
Linking options:
  • https://www.mathnet.ru/eng/mm3287
  • https://www.mathnet.ru/eng/mm/v24/i6/p91
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
    Statistics & downloads:
    Abstract page:493
    Full-text PDF :294
    References:58
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024