Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2012, Volume 24, Number 3, Pages 113–136 (Mi mm3273)  

This article is cited in 3 scientific papers (total in 3 papers)

On the Craig method convergency for linear algebraic systems

N. N. Kalitkin, L. V. Kuzmina

Keldysh Institute of Applied Mathematics of Rus. Acad. Sci., Moscow
Full-text PDF (792 kB) Citations (3)
References:
Abstract: The iterative Craig method permits to solve linear algebraic systems with nonsymmetric (and even rectangular) matrix. The simple form of this method was constracted. The convergention this method was inverstigated on tests. The comparison with the conjugated gradients method was fulfeeld. It occurred that round of errors for the Craig method decelerate essentially iterations convergence, but not prevent from high accuracy achievement (for well conditioned matrixes). The effective criterium is found for iterations truncation.
Keywords: linear algebraic systems, the Craig method, iterations convergency, round of errors.
Received: 14.04.2011
English version:
Mathematical Models and Computer Simulations, 2012, Volume 4, Issue 5, Pages 509–526
DOI: https://doi.org/10.1134/S2070048212050055
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: N. N. Kalitkin, L. V. Kuzmina, “On the Craig method convergency for linear algebraic systems”, Matem. Mod., 24:3 (2012), 113–136; Math. Models Comput. Simul., 4:5 (2012), 509–526
Citation in format AMSBIB
\Bibitem{KalKuz12}
\by N.~N.~Kalitkin, L.~V.~Kuzmina
\paper On the Craig method convergency for linear algebraic systems
\jour Matem. Mod.
\yr 2012
\vol 24
\issue 3
\pages 113--136
\mathnet{http://mi.mathnet.ru/mm3273}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2977826}
\elib{https://elibrary.ru/item.asp?id=21276742}
\transl
\jour Math. Models Comput. Simul.
\yr 2012
\vol 4
\issue 5
\pages 509--526
\crossref{https://doi.org/10.1134/S2070048212050055}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928996289}
Linking options:
  • https://www.mathnet.ru/eng/mm3273
  • https://www.mathnet.ru/eng/mm/v24/i3/p113
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:598
    Full-text PDF :269
    References:93
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024