Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2012, Volume 24, Number 12, Pages 107–112 (Mi mm3231)  

Training artificial neural networks with dynamic particle swarm optimisation

A. S. Rakitianskaiaa, A. P. Engelbrechtb

a LIT, JINR
b University of Pretoria
References:
Abstract: Particle swarm optimisation has been successfully applied to train artificial feedforward neural networks before, however, considered problems were assumed to be static. Such assumption does not hold for many real-world problems. This article investigates the applicability of dynamic particle swarm optimisation algorithms as neural network training algorithms for dynamic classification problems. The performance of dynamic particle swarm optimization is compared to back-propagation, and dynamic particle swarm optimisation is shown to be a viable training algorithm for dynamic classification problems.
Keywords: artificial neural networks, particle swarm optimisation, supervised training, dynamic environments.
Received: 01.10.2012
Document Type: Article
UDC: 004.855.5, 004.832.23
Language: Russian
Citation: A. S. Rakitianskaia, A. P. Engelbrecht, “Training artificial neural networks with dynamic particle swarm optimisation”, Matem. Mod., 24:12 (2012), 107–112
Citation in format AMSBIB
\Bibitem{RakEng12}
\by A.~S.~Rakitianskaia, A.~P.~Engelbrecht
\paper Training artificial neural networks with dynamic particle swarm optimisation
\jour Matem. Mod.
\yr 2012
\vol 24
\issue 12
\pages 107--112
\mathnet{http://mi.mathnet.ru/mm3231}
Linking options:
  • https://www.mathnet.ru/eng/mm3231
  • https://www.mathnet.ru/eng/mm/v24/i12/p107
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:618
    Full-text PDF :282
    References:82
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024