Loading [MathJax]/jax/output/SVG/config.js
Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2012, Volume 24, Number 2, Pages 84–98 (Mi mm3207)  

Research of the demand for consumer loans and money

I. F. Gimaltdinov

M. V. Lomonosov Moscow State University
References:
Abstract: The paper describes a Ramsey-type model taking into account the demand for consumer credits and the liquidity constraints. For the solution with the finite planning horizon, the existence of intermidiate turnpike has been proved. It is also proved that the intermidiate turnpike is a solution for problem with infinite problem.
Keywords: synthesys of optimal control, intermidiate turnpike.
Received: 26.05.2011
Bibliographic databases:
Document Type: Article
UDC: 519.714
Language: Russian
Citation: I. F. Gimaltdinov, “Research of the demand for consumer loans and money”, Mat. Model., 24:2 (2012), 84–98
Citation in format AMSBIB
\Bibitem{Gim12}
\by I.~F.~Gimaltdinov
\paper Research of the demand for consumer loans and money
\jour Mat. Model.
\yr 2012
\vol 24
\issue 2
\pages 84--98
\mathnet{http://mi.mathnet.ru/mm3207}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2977121}
Linking options:
  • https://www.mathnet.ru/eng/mm3207
  • https://www.mathnet.ru/eng/mm/v24/i2/p84
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:723
    Full-text PDF :232
    References:78
    First page:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025