Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2012, Volume 24, Number 1, Pages 46–54 (Mi mm3197)  

Modeling of heat transfer in the nonlinear anisotropic space using the analytic solution

E. L. Kuznetsova

Moscow Aviation Institute (State Technical University)
References:
Abstract: Quasi-linear parabolic equation with boundary condition of the first kind in origin of coordinates is solved for the anisotropic space where heat conductivity tensor’s components have power dependence from temperature. Analysis of the solution has show a wave type and finite speed of the diffusion of heat in the anisotropic space as opposed to infinite speed of case parabolic type linear equation. It is shown that the heat wave’s front in the anisotropic space likes ellipse in case of a plane and likes ellipsoid in case of space. The domains of power law where the solution exists have been investigated. Results are discussed.
Keywords: wave heat transfer, nonlinear anisotropic space, heat conductivity tensor, analytic solution, heat flow, heat wave, heat conductivity, nonlinear problem.
Received: 25.04.2011
Bibliographic databases:
Document Type: Article
UDC: 536.244
Language: Russian
Citation: E. L. Kuznetsova, “Modeling of heat transfer in the nonlinear anisotropic space using the analytic solution”, Matem. Mod., 24:1 (2012), 46–54
Citation in format AMSBIB
\Bibitem{Kuz12}
\by E.~L.~Kuznetsova
\paper Modeling of heat transfer in the nonlinear anisotropic space using the analytic solution
\jour Matem. Mod.
\yr 2012
\vol 24
\issue 1
\pages 46--54
\mathnet{http://mi.mathnet.ru/mm3197}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2978090}
Linking options:
  • https://www.mathnet.ru/eng/mm3197
  • https://www.mathnet.ru/eng/mm/v24/i1/p46
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:466
    Full-text PDF :136
    References:59
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024