Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2004, Volume 16, Number 8, Pages 50–58 (Mi mm319)  

This article is cited in 1 scientific paper (total in 1 paper)

The asymptotic solution of weak nonlinear differential equation system “reaction-diffusion” type

A. V. Nesterov, O. V. Shuliko

Obninsk State Technical University for Nuclear Power Engineering
Full-text PDF (700 kB) Citations (1)
References:
Abstract: The asymptotic representation of the solution of the singularly pertorbed weak nonlinear differential equations system “reaction-diffusion” type is constracted. The main feature of the problem is the transition internal layer, which is discribed by nonlinear Burgers-type parabolic equation.
Received: 30.09.2003
Bibliographic databases:
Language: Russian
Citation: A. V. Nesterov, O. V. Shuliko, “The asymptotic solution of weak nonlinear differential equation system “reaction-diffusion” type”, Matem. Mod., 16:8 (2004), 50–58
Citation in format AMSBIB
\Bibitem{NesShu04}
\by A.~V.~Nesterov, O.~V.~Shuliko
\paper The asymptotic solution of weak nonlinear differential equation system ``reaction-diffusion'' type
\jour Matem. Mod.
\yr 2004
\vol 16
\issue 8
\pages 50--58
\mathnet{http://mi.mathnet.ru/mm319}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2101686}
\zmath{https://zbmath.org/?q=an:1113.35095}
Linking options:
  • https://www.mathnet.ru/eng/mm319
  • https://www.mathnet.ru/eng/mm/v16/i8/p50
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:365
    Full-text PDF :198
    References:34
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024