Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2011, Volume 23, Number 12, Pages 65–78 (Mi mm3185)  

This article is cited in 13 scientific papers (total in 13 papers)

Monotone high-precision compact scheme for quasilinear hyperbolic equations

B. V. Rogova, M. N. Mikhailovskayab

a Keldysh Institute of Applied Mathematics of RAS, Moscow
b Moscow Institute of Physics аnd Technology, State University
References:
Abstract: Monotone homogeneous compact difference scheme, previously proposed by the authors for the linear transport equation, generalized to the case of quasilinear equations of hyperbolic type. The generalized scheme is fourth order approximation in spatial coordinates on a compact stencil and a first order approximation in time. The scheme is conservative, absolutely stable, monotonic over a wide range of local Courant number and can be solved by explicit formulas of the running calculation method. Quasimonotone three-stage scheme, which has the third-order approximation in time for smooth solutions, built on the basis of the scheme first-order approximation in time. Numerical results demonstrate the accuracy of the proposed schemes and their monotonicity in the solution of test problems for the quasilinear Hopf equation.
Keywords: quasilinear hyperbolic equations, compact difference schemes, monotonicity, running calculation method.
Received: 25.04.2011
English version:
Mathematical Models and Computer Simulations, 2012, Volume 4, Issue 4, Pages 375–384
DOI: https://doi.org/10.1134/S2070048212040060
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: B. V. Rogov, M. N. Mikhailovskaya, “Monotone high-precision compact scheme for quasilinear hyperbolic equations”, Matem. Mod., 23:12 (2011), 65–78; Math. Models Comput. Simul., 4:4 (2012), 375–384
Citation in format AMSBIB
\Bibitem{RogMik11}
\by B.~V.~Rogov, M.~N.~Mikhailovskaya
\paper Monotone high-precision compact scheme for quasilinear hyperbolic equations
\jour Matem. Mod.
\yr 2011
\vol 23
\issue 12
\pages 65--78
\mathnet{http://mi.mathnet.ru/mm3185}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2964369}
\transl
\jour Math. Models Comput. Simul.
\yr 2012
\vol 4
\issue 4
\pages 375--384
\crossref{https://doi.org/10.1134/S2070048212040060}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871406041}
Linking options:
  • https://www.mathnet.ru/eng/mm3185
  • https://www.mathnet.ru/eng/mm/v23/i12/p65
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025