Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2011, Volume 23, Number 9, Pages 57–64 (Mi mm3154)  

Modeling of Ritz's method of piecewise-inhomogeneous rod system near the critical speed

A. A. Bityurin

Ulyanovsk State Technical University
References:
Abstract: The mathematical modeling of longitudinal elastic central impact of the step and homogeneous rod with a rigid obstacle, at not hard ties by the solutions of the wave equation by d'alembert is realized. On the basis of the law of conservation of energy it is calculated the value of the critical compressive load Ritz's method, in accordance with which further it is calculated the value of the critical speed during the strike, leading to the loss of stability of the rod system.
Keywords: sustainability, impact, modeling, speed, rod.
Received: 14.02.2011
Document Type: Article
UDC: 622.233.6
Language: Russian
Citation: A. A. Bityurin, “Modeling of Ritz's method of piecewise-inhomogeneous rod system near the critical speed”, Matem. Mod., 23:9 (2011), 57–64
Citation in format AMSBIB
\Bibitem{Bit11}
\by A.~A.~Bityurin
\paper Modeling of Ritz's method of piecewise-inhomogeneous rod system near the critical speed
\jour Matem. Mod.
\yr 2011
\vol 23
\issue 9
\pages 57--64
\mathnet{http://mi.mathnet.ru/mm3154}
Linking options:
  • https://www.mathnet.ru/eng/mm3154
  • https://www.mathnet.ru/eng/mm/v23/i9/p57
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024