Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2011, Volume 23, Number 9, Pages 33–42 (Mi mm3152)  

This article is cited in 1 scientific paper (total in 1 paper)

Bayesian regularization in the problem of point-by-point function approximation using orthogonalized basis

A. S. Nuzhny

Nuclear Safety Institute of Russian Academy of Sciences, Moscow
Full-text PDF (188 kB) Citations (1)
References:
Abstract: The algorithm of point-by-point approximation of multidimensional scalar function is discussed. The solution is searched as series of basic functions. Regularization of approximation is realized by inclusion of stabilizing functional in the Gaussian form. Regularization parameter is searched using Bayesian method. The proposed algorithm is very inexpensive from a computational point of view. In addition it has a unique analytical solution for regularization parameter in contrast to other Bayesian algorithms.
Keywords: approximation, ill-posed problem, Bayesian regularization, supervised learning.
Received: 25.01.2011
English version:
Mathematical Models and Computer Simulations, 2012, Volume 4, Issue 2, Pages 203–209
DOI: https://doi.org/10.1134/S2070048212020111
Bibliographic databases:
Document Type: Article
UDC: 519.651
Language: Russian
Citation: A. S. Nuzhny, “Bayesian regularization in the problem of point-by-point function approximation using orthogonalized basis”, Matem. Mod., 23:9 (2011), 33–42; Math. Models Comput. Simul., 4:2 (2012), 203–209
Citation in format AMSBIB
\Bibitem{Nuz11}
\by A.~S.~Nuzhny
\paper Bayesian regularization in the problem of point-by-point function approximation using orthogonalized basis
\jour Matem. Mod.
\yr 2011
\vol 23
\issue 9
\pages 33--42
\mathnet{http://mi.mathnet.ru/mm3152}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2896215}
\transl
\jour Math. Models Comput. Simul.
\yr 2012
\vol 4
\issue 2
\pages 203--209
\crossref{https://doi.org/10.1134/S2070048212020111}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928983205}
Linking options:
  • https://www.mathnet.ru/eng/mm3152
  • https://www.mathnet.ru/eng/mm/v23/i9/p33
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:858
    Full-text PDF :493
    References:84
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024