Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2011, Volume 23, Number 7, Pages 88–96 (Mi mm3133)  

Computing experiments in the problem on eigenvalues for the operator of Laplace in the polygonal domain

S. D. Algazin

Establishment of the Russian Academy of Sciences A. Ishlinsky Institite of Problems of the Mechanics, Russian Academy of Sciences
References:
Abstract: The technique of a numerical evaluation of eigenvalues of an operator of Laplace in a polygon is described. As an example it is considered L-figurative area. The circle conformal mapping on this area by means of an integral of Christoffel–Schwarz is under construction. In a circle the problem dares on earlier developed by the author (together with K. I. Babenko) a technique without saturation. The problem consists in, whether this technique to piecewise smooth boundaries (the conformal mapping has on singularity boundary) is applicable. The done evaluations show that it is possible to calculate about 5 eigenvalues (for a problem of Neumann about 100 eigenvalues) an operator of Laplace in this area with two-five signs after a comma.
Keywords: eigenvalues of an operator of Laplace, an integral of Christoffel-Schwarz, numerical algorithm without saturation.
Received: 15.02.2011
Bibliographic databases:
Document Type: Article
UDC: 519.632.4
Language: Russian
Citation: S. D. Algazin, “Computing experiments in the problem on eigenvalues for the operator of Laplace in the polygonal domain”, Matem. Mod., 23:7 (2011), 88–96
Citation in format AMSBIB
\Bibitem{Alg11}
\by S.~D.~Algazin
\paper Computing experiments in the problem on eigenvalues for the operator of Laplace in the polygonal domain
\jour Matem. Mod.
\yr 2011
\vol 23
\issue 7
\pages 88--96
\mathnet{http://mi.mathnet.ru/mm3133}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2895745}
Linking options:
  • https://www.mathnet.ru/eng/mm3133
  • https://www.mathnet.ru/eng/mm/v23/i7/p88
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024