Abstract:
A multigrid algorithm for the solution of finite element stabilized discretization of compressible fluid dynamics equations on unstructured grids is described. Solution of the stationary problems is seached by time-stepping and a linearization of the non-linear discrete systems leads to a very large system of linear equations. These systems are ill-conditioned and require efficient computational procedures. The numerical experiments for Navier–Stokes and Euler systems are presented. The method can be easily included in a parallel library as preconditioner.
Citation:
V. T. Zhukov, O. B. Feodoritova, “Multigrid for finite-element discretizations of the equations of aerodynamics”, Mat. Model., 23:1 (2011), 115–131; Math. Models Comput. Simul., 3:4 (2011), 446–456
This publication is cited in the following 9 articles:
A. V. Gorobets, S. A. Soukov, A. R. Magomedov, “Heterogeneous parallel implementation of a multigrid method with full approximation in the NOISETTE code”, Matem. Mod., 36:2 (2024), 129–146
A. V. Gorobets, S. A. Soukov, A. R. Magomedov, “Heterogeneous Parallel Implementation of a Multigrid Method with Full Approximation in the Noisette Code”, Math Models Comput Simul, 16:4 (2024), 609
A. V. Gorobets, “An approach to the implementation of the multigrid method with full approximation for CFD problems”, Comput. Math. Math. Phys., 63:11 (2023), 2150–2161
V. T. Zhukov, N. D. Novikova, O. B. Feodoritova, “Multigrid method for elliptic equations with anisotropic discontinuous coefficients”, Comput. Math. Math. Phys., 55:7 (2015), 1150–1163
V. T. Zhukov, N. D. Novikova, O. B. Feodoritova, “Parallel multigrid method for solving elliptic equations”, Math. Models Comput. Simul., 6:4 (2014), 425–434
Zhukov V.T., Novikova N.D., Feodoritova O.B., “Parallelnyi mnogosetochnyi metod dlya raznostnykh ellipticheskikh uravnenii. Chast I. Osnovnye elementy algoritma”, Preprinty IPM im. M.V. Keldysha, 2012, no. 30, 1–32
V. T. Zhukov, N. D. Novikova, O. B. Feodoritova, “Parallelnyi mnogosetochnyi metod dlya raznostnykh ellipticheskikh uravnenii. \Chast I. Osnovnye elementy algoritma”, Preprinty IPM im. M. V. Keldysha, 2012, 030, 32 pp.
V. T. Zhukov, N. D. Novikova, O. B. Feodoritova, “Parallelnyi mnogosetochnyi metod dlya raznostnykh ellipticheskikh uravnenii. Anizotropnaya diffuziya”, Preprinty IPM im. M. V. Keldysha, 2012, 076, 36 pp.