Loading [MathJax]/jax/output/SVG/config.js
Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2010, Volume 22, Number 10, Pages 127–158 (Mi mm3034)  

This article is cited in 45 scientific papers (total in 45 papers)

On explicit methods for the time integration of parabolic equations

V. T. Zhukov

Keldysh Institute of Applied Mathematics, Moscow, Russia
References:
Abstract: We consider some principles for construction of the time integration schemes for parabolic equations. It is presented an approach based on explicit iterations with Chebyshev parameters and resulting in the schemes of the first and second order of accuracy. This paper gives systematization of knowledge of these schemes, conditions of their applicability, included applications for computations of high temperature processes in thermonuclear targets.
Keywords: difference schemes, parabolic equations, Chebyshev parameters.
Received: 04.02.2010
English version:
Mathematical Models and Computer Simulations, 2011, Volume 3, Issue 3, Pages 311–332
DOI: https://doi.org/10.1134/S2070048211030136
Bibliographic databases:
Document Type: Article
UDC: 519.6
Language: Russian
Citation: V. T. Zhukov, “On explicit methods for the time integration of parabolic equations”, Mat. Model., 22:10 (2010), 127–158; Math. Models Comput. Simul., 3:3 (2011), 311–332
Citation in format AMSBIB
\Bibitem{Zhu10}
\by V.~T.~Zhukov
\paper On explicit methods for the time integration of parabolic equations
\jour Mat. Model.
\yr 2010
\vol 22
\issue 10
\pages 127--158
\mathnet{http://mi.mathnet.ru/mm3034}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2809075}
\transl
\jour Math. Models Comput. Simul.
\yr 2011
\vol 3
\issue 3
\pages 311--332
\crossref{https://doi.org/10.1134/S2070048211030136}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84925938288}
Linking options:
  • https://www.mathnet.ru/eng/mm3034
  • https://www.mathnet.ru/eng/mm/v22/i10/p127
  • This publication is cited in the following 45 articles:
    1. V. T. Zhukov, N. D. Novikova, O. B. Feodoritova, “Vychislitelnaya model nestatsionarnykh mnogokomponentnykh techenii s sopryazhennym teploobmenom”, Matem. modelirovanie, 37:1 (2025), 3–25  mathnet  crossref
    2. B. J. Guan, C. Zhang, L. F. Wang, H. H. Dai, Z. Chen, J. F. Wu, Z. Y. Li, Y. J. Li, “Instability seeding mechanisms at the fuel–ablator interface due to internal defects”, Physics of Plasmas, 32:3 (2025)  crossref
    3. E. E. Peskova, O. S. Yazovtseva, E. Yu. Makarova, N. A. Tingaeva, Communications in Computer and Information Science, 1914, Mathematical Modeling and Supercomputer Technologies, 2024, 112  crossref
    4. E. E. Peskova, O. S. Yazovtseva, “Application of the Explicitly Iterative Scheme to Simulating Subsonic Reacting Gas Flows”, Comput. Math. and Math. Phys., 64:2 (2024), 326  crossref
    5. M. A. Botchev, V. T. Zhukov, “Adaptive Iterative Explicit Time Integration for Nonlinear Heat Conduction Problems”, Lobachevskii J Math, 45:1 (2024), 12  crossref
    6. M. A. Botchev, “On convergence of waveform relaxation for nonlinear systems of ordinary differential equations”, Calcolo, 61:2 (2024)  crossref
    7. M. A. Botchev, I. A. Fahurdinov, E. B. Savenkov, “Efficient and Stable Time Integration of Cahn–Hilliard Equations: Explicit, Implicit, and Explicit Iterative Schemes”, Comput. Math. and Math. Phys., 64:8 (2024), 1726  crossref
    8. V. T. Zhukov, O. B. Feodoritova, “Scheme for Calculating Unsteady Flows of Heat-Conducting Gas in the Three-Temperature Approximation”, Comput. Math. and Math. Phys., 64:8 (2024), 1840  crossref
    9. M. A. Botchev, I. A. Fakhrutdinov, E. B. Savenkov, “Efficient and stable time integration of Cahn–Hilliard equations: explicit, implicit, and explicit iterative schemes”, Comput. Math. Math. Phys., 64:8 (2024), 1726–1746  mathnet  mathnet  crossref  crossref
    10. V. T. Zhukov, N. D. Novikova, O. B. Feodoritova, “O pryamom metode resheniya zadachi sopryazhennogo teploobmena gazovoi smesi i tverdogo tela”, Preprinty IPM im. M. V. Keldysha, 2023, 012, 36 pp.  mathnet  crossref
    11. A. A. Bai, “Modelirovanie vzaimodeistviya lazernogo izlucheniya s kriogennoi vodorodnoi plenkoi na octree-setkakh blochnogo tipa”, Preprinty IPM im. M. V. Keldysha, 2023, 060, 24 pp.  mathnet  crossref
    12. M. A. Bochev, V. T. Zhukov, “Eksponentsialnaya i neyavnaya skhemy Eilera dlya resheniya nelineinykh zadach teploprovodnosti”, Preprinty IPM im. M. V. Keldysha, 2023, 069, 16 pp.  mathnet  crossref
    13. M. A. Botchev, V. T. Zhukov, “Exponential Euler and Backward Euler Methods for Nonlinear Heat Conduction Problems”, Lobachevskii J Math, 44:1 (2023), 10  crossref
    14. P.P. Zakharov, N.N. Smirnov, A.B. Kiselev, “Numerical modelling of high velocity impact problem involving non-linear viscosity”, Acta Astronautica, 212 (2023), 398  crossref
    15. O. B. Feodoritova, N. D. Novikova, V. T. Zhukov, “Development of Numerical Methodology for Unsteady Fluid–Solid Thermal Interaction in Multicomponent Flow Simulation”, Lobachevskii J Math, 44:1 (2023), 33  crossref
    16. V. T. Zhukov, N. D. Novikova, O. B. Feodoritova, “On one method for calculating nonstationary heat transfer between a gas flow and a solid body”, Comput. Math. Math. Phys., 63:12 (2023), 2344–2358  mathnet  mathnet  crossref  crossref
    17. V. E. Borisov, B. V. Kritskii, Yu. G. Rykov, “Programmnyi modul MCFL-Chem dlya rascheta vysokoskorostnykh techenii smesi reagiruyuschikh gazov”, Preprinty IPM im. M. V. Keldysha, 2022, 021, 40 pp.  mathnet  crossref
    18. B. N. Chetverushkin, O. G. Olkhovskaya, V. A. Gasilov, “An explicit difference scheme for non-linear heat conduction equation”, Math. Models Comput. Simul., 15:3 (2023), 529–538  mathnet  crossref  crossref  mathscinet
    19. M. A. Botchev, “Solving anisotropic heat equations by exponential shift-and-invert and polynomial Krylov subspace methods”, Keldysh Institute preprints, 2022, 4–17  mathnet  mathnet  crossref
    20. M.A. Botchev, “Solving anisotropic heat equations by exponential shift-and-invert and polynomial Krylov subspace methods”, J. Phys.: Conf. Ser., 2028:1 (2021), 012021  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:985
    Full-text PDF :628
    References:123
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025