Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2010, Volume 22, Number 10, Pages 56–68 (Mi mm3028)  

Improving the efficiency of variational methods for solving strongly nonsymmetric linear algebraic equation system received in convection-diffusion problems

L. A. Krukier, O. A. Pichugina, T. S. Martynova

Southern Federal University
References:
Abstract: An effective algorithm for implementing the mathematical model of convective-diffusive transport with a dominant convection is proposed. Preconditioned Krylov subspace methods are used for the solution of a strongly nonsymmetric systems. A convergence analysis of product triangular preconditioners was made. Numerical experiments have confirmed the effectiveness of this technique.
Keywords: convection-diffusion equation, variational methods, triangular and product triangular preconditioners, convergence.
Received: 21.07.2009
English version:
Mathematical Models and Computer Simulations, 2011, Volume 3, Issue 3, Pages 346–356
DOI: https://doi.org/10.1134/S2070048211030069
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: L. A. Krukier, O. A. Pichugina, T. S. Martynova, “Improving the efficiency of variational methods for solving strongly nonsymmetric linear algebraic equation system received in convection-diffusion problems”, Matem. Mod., 22:10 (2010), 56–68; Math. Models Comput. Simul., 3:3 (2011), 346–356
Citation in format AMSBIB
\Bibitem{KruPicMar10}
\by L.~A.~Krukier, O.~A.~Pichugina, T.~S.~Martynova
\paper Improving the efficiency of variational methods for solving strongly nonsymmetric linear algebraic equation system received in convection-diffusion problems
\jour Matem. Mod.
\yr 2010
\vol 22
\issue 10
\pages 56--68
\mathnet{http://mi.mathnet.ru/mm3028}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2809074}
\transl
\jour Math. Models Comput. Simul.
\yr 2011
\vol 3
\issue 3
\pages 346--356
\crossref{https://doi.org/10.1134/S2070048211030069}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928981051}
Linking options:
  • https://www.mathnet.ru/eng/mm3028
  • https://www.mathnet.ru/eng/mm/v22/i10/p56
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025