Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2004, Volume 16, Number 6, Pages 93–96 (Mi mm282)  

XII International Conference on Computing Mechanics and Advanced Applied Codes

Numerical modeling of the boundary layer in elastoviscoplastic solids

V. N. Kukudzhanov, A. L. Levitin

A. Ishlinsky Institite for Problems in Mechanics, Russian Academy of Sciences
References:
Abstract: Classical model of elastoplastic flow is inconsistent for boundary problems – solution does not exist, when tangential component of loading (stress or velocity) is larger then yield stress. The elastoviscoplastic model generalize elastoplastic model and is the simplest model for which this boundary problem has the solution. In this paper the skew impact of the semispace is considered. The elastoviscoplastic flow theory with yield condition depended on first and second invariants of stress tensor is considered. The theory allows to describe damage of metals, porouse and granular materials, soils, ceramics etc. For the velocity, which exceeds the critical value the boundary effect is appeared, the plastic strain localization occurs. It is shown that presence of the first invariant qualitatively changes the character of boundary layer and strain localization effect.
Bibliographic databases:
Language: Russian
Citation: V. N. Kukudzhanov, A. L. Levitin, “Numerical modeling of the boundary layer in elastoviscoplastic solids”, Matem. Mod., 16:6 (2004), 93–96
Citation in format AMSBIB
\Bibitem{KukLev04}
\by V.~N.~Kukudzhanov, A.~L.~Levitin
\paper Numerical modeling of the boundary layer in elastoviscoplastic solids
\jour Matem. Mod.
\yr 2004
\vol 16
\issue 6
\pages 93--96
\mathnet{http://mi.mathnet.ru/mm282}
\zmath{https://zbmath.org/?q=an:1079.74517}
Linking options:
  • https://www.mathnet.ru/eng/mm282
  • https://www.mathnet.ru/eng/mm/v16/i6/p93
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:531
    Full-text PDF :198
    References:60
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024